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Transport through potential barriers in graphene is investigated using a set of metallic gates capacitively

coupled to graphene to modulate the potential landscape. When a gate-induced potential step is steep

enough, disorder becomes less important and the resistance across the step is in quantitative agreement

with predictions of Klein tunneling of Dirac fermions up to a small correction. We also perform

magnetoresistance measurements at low magnetic fields and compare them to recent predictions.
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Graphene is promising for novel applications and fun-
damental physics due to its remarkable electronic, optical,
and mechanical properties [1]. At energies relevant to
electrical transport, quasiparticles are believed to behave
like Dirac fermions with a constant velocity vF ’ 1:1�
106 m � s�1 characterizing their dispersion relation E ¼
@vFk. The Klein paradox for massless Dirac fermions
predicts that carriers in graphene hitting a potential step
at normal incidence transmit with probability one regard-
less of the height and width of the step [2]. At non-normal
incidence, this tunneling problem for 2D massless fermi-
ons can be represented as a 1D problem for massive Dirac
fermions, with the effective mass proportional to the con-
served transverse momentum. The Klein tunneling proba-
bility should then depend on the profile of the potential step
[2–4]. Recent experiments have investigated transport
across potential steps imposed by a set of electrostatic
gates [5–10], and results of Ref. [9] support an interpreta-
tion of Klein tunneling. We present measurements on six
devices which allow a quantitative comparison with Klein
tunneling in graphene when the potential profile created by
the gates is evaluated realistically [11]. Disorder is suffi-
ciently strong in all our devices to mask effects of multiple
reflections between the two steps of a potential barrier, so
that all data can be accounted for by considering two
independent steps adding Ohmically in series. Finally, we
probe the transition from clean to disordered transport
across a single potential step, and we refine the accuracy
of the transition parameter introduced by Fogler et al. [12].
In a complementary measurement, we show that the effect
of a low magnetic field on the Klein tunneling across a
potential step in graphene is not explained by existing
predictions in the clean limit [13].

We measure six top-gated graphene devices (typical
schematic shown in Fig. 1), whose essential parameters
are listed in Table I. The density nbg far from the top-gated

region is set by the back gate according to nbg ¼
CbgðVbg�V0

bg
Þ

e , where Cbg ¼ 13:6 nF � cm�2 is the back gate

capacitance per area (from Hall effect measurements on a
similar wafer oxidized in the same furnace run), e is the

electron charge, and V0
bg is the gate voltage required to

attain zero average density [14]. The density ntg well inside

the top-gated region is set by both back gate and top gate

voltages according to ntg ¼ nbg þ CtgðVtg�V0
tgÞ

e , where Ctg

and V0
tg are the top gate counterparts of Cbg and V0

bg.

Throughout this Letter we use the notation �ntg ¼ ntg �
nbg to identify the contribution of the top gate voltage only,

which tunes the potential step height. As described in
previous work [5], an asymmetry with respect to ntg ¼ 0

appears in the four-probe resistance measured across a top-
gated region as a function of Vtg for fixed back gate

voltages Vbg [Fig. 2(b)]. This asymmetry quantifies the

resistance across the potential step in graphene created
by the gates. All graphene top-gated devices were fabri-
cated in the same way, which is described in detail in the
supporting material [15]. For electrical characterization,
samples are immersed in liquid helium at 4 K and four-
terminal measurements are made using a lock-in amplifier
at a frequency 32 Hz with a bias current of 100 nA. All
samples show typical monolayer graphene spectra mea-
sured by Raman spectroscopy and exhibit the quantum
Hall plateaus characteristic of graphene when measured
in perpendicular magnetic fields up to 8 T at 4 K (see
supporting material [15]).
In order to extract the resistance of the p-n interfaces

only, we measure the odd part of resistance Rodd about
ntg ¼ 0 [5]:

FIG. 1. Schematic diagram of a top-gated graphene device
with a four-probe measurement setup. Graphene sheet is black,
metal contacts and gates are dark gray.

PRL 102, 026807 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

16 JANUARY 2009

0031-9007=09=102(2)=026807(4) 026807-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.026807


2Roddðnbg; ntgÞ � Rðnbg; ntgÞ � Rðnbg;�ntgÞ; (1)

where R is the four-probe resistance as a function of the
densities far from the top-gated region and well inside that
region. Extracting the odd part Rodd from the measured
resistance requires an accurate determination of the den-
sities nbg and ntg. This is made by the measurement of three

independent quantities V0
bg, V

0
tg, and Ctg=Cbg. We carefully

measure these quantities by using the quantum Hall mea-
surements at 8 T and electron-hole symmetry [15]. There
are two physical interpretations for Rodd depending on the
relative magnitude of two length scales: the mean free path
le ¼ h

e2
�

2
ffiffiffiffiffi
�n

p (well defined for kFle � 1 or equivalently for

a conductivity � � 2e2=h) and the top gate length L. For
L � le, after crossing the first interface of the barrier
carriers lose all momentum information before impinging
on the second interface. In this case, the total barrier
resistance can be modeled by two junctions in series. The
expression 2ðRpn � RppÞ where Rpn (Rpp) denotes the theo-

retical value of the resistance of a single p-n (p-p) inter-
face, can then be compared directly to the experimental
quantity 2Rodd [5]. For L � le, multiple reflections occur

between the two interfaces of the barrier, which is pre-
dicted to reduce the total barrier resistance [15]. As all
devices have modest mobility, we start by using a diffusive
model to calculate Rpn and Rpp. In this model, due to

disorder the resistance depends on the local resistivity
�ðnÞ (measured for a uniform density at Vtg ¼ V0

tg) at

each position x:

RðdifÞ
pn � RðdifÞ

pp ¼ 1

w

Z
�ðnðnbg; ntg; xÞÞ

� �ðnðnbg;�ntg; xÞÞdx: (2)

Figure 3 compares the experimental curves for 2Rodd as a
function of Vtg at several Vbg for samples A60 and C540 to

the corresponding predictions. Clearly, the diffusive model
represented by the dashed lines predicts resistance values
considerably below the experimental curves, hinting that
transport through the device cannot be viewed as entirely
diffusive. Following the calculation by Fogler et al. [12],
we retain the diffusive model for the region away from the
interface, but replace it by a ballistic interface model for a
region extending one mean free path in either direction
from the location where density changes polarity [16].
Thus,

Rpn � Rpp ¼ RðbalÞ
pn � RðbalÞ

pp þ RðdifÞ
pn jx�jlej � RðdifÞ

pp jx�jlej;
(3)

where the two last terms are taken from Eq. (2), but with
the integral excluding x 2 ½�le; le�. The first two terms are
the ballistic contributions to the interface resistance for
bipolar and monopolar configurations, and can be calcu-
lated individually as follows. All conduction channels on
the low-density side of a monopolar junction should have

transmission nearly 1 through the junction [17], so RðbalÞ
pp ¼

4e2

h

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�minðjnbgj;jntgjÞ

p
2� . The bipolar case was addressed by

Zhang and Fogler [11]:

RðbalÞ
pn ¼ c1

h

e2w
��1=6jn0j�1=3; (4)

where h is Planck’s constant, � ¼ e2

�r@vF
	 0:56 is the di-
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ntg 1012cm 2 FIG. 2 (color). (a) Four-probe resist-
ance measured on device C540 (see
Table I), as a function of Vbg and Vtg.

The color scale can be inferred from the
cuts shown in (b). The densities nbg and

�ntg are estimated using V0
tg ¼ 2:42 V,

V0
bg ¼ 18:65 V, and Ctg ¼ 107 nF �

cm�2. (b) Resistance as a function of
Vtg at several values of Vbg. The two

bold curves show a clear asymmetry
with respect to the peak (ntg ¼ 0) for

both Vbg < V0
bg (red) and Vbg > V0

bg (yel-

low).

TABLE I. Geometrical properties of the samples: top gate
length L, graphene strip width (interface length) w, and top
gate dielectric thickness d. Same letter for two device labels
indicates same graphene sheet. All dimensions were taken by
both scanning electron microscopy and atomic force microscopy.
The transition parameter � between clean and diffusive transport
in a single p-n junction is also shown (see text), averaged across
the whole measured voltage range such that nbg < 0 and ntg > 0.

Counterintuitively, despite devices’ low mobility, � � 1 so that
Klein tunneling is expected rather than diffusion across the
interface.

Sample L (nm) w (�m) d (nm) h�i � (cm2 V�1 s�1)

A60 60 4.3 34 7.6 1800

B100 100 2.1 42 3.8 1700

B220 220 2.1 42 3.5 1700

C540 540 1.74 25 7.9 1400

A860 860 3.6 34 7.9 1800

C1700 1700 1.74 47 1.9 1300
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mensionless strength of Coulomb interactions (�r 
 3:9 is
the average dielectric constant of SiO2 and cross-linked
polymethyl methacrylate (PMMA) measured at 4 K), and
n0 is the slope of the density profile at the position where
the density crosses zero (density profile calculated from the
classical Poisson equation with realistic gate geometry,
temporarily treating graphene as a perfect conductor).
Expression (4) refines this calculation to take into account
nonlinear screening of graphene close to zero density,
going beyond the linear model used in Ref. [3]. The
prefactor c1 in Eq. (4) is determined numerically [11]. In
our case, � ¼ 0:56 and the prefactor is predicted to be
c1 ¼ 1:10� 0:03 [18]. In order to test this prediction c1
will be used as a single fit parameter across all samples and
densities. The solid lines in Fig. 3 were generated by Eq.
(3), choosing c1 ¼ 1:35 to best account for all experimen-
tal curves in all devices (voltages Vbg >V0

bg give a similar

agreement, not shown for clarity). The slight discrepancy
between theoretical and experimental values of c1 might be
due in part to exchange and correlation effects. Trying to fit
the data using a naive linear potential model requires an
independent fitting parameter for each device, and even
with the best fit to the data, some qualitative trends of the
experimental data cannot be accounted for by this model,
as described in detail in the supporting material [15]. This
mismatch between the linear model and the data indicates
the importance of accounting for nonlinear screening close
to zero average density. We continue by calculating the
ratio � ¼ Rodd=ðRpn � RppÞ, for all devices, for all mea-
sured Vbg and Vtg, using Eq. (3). The histogram of � is

sharply peaked at a certain value �peak with a small peak
width [15]. For all devices except C1700, regardless of
their length L, � is close or slightly higher than 1 when
using c1 ¼ 1:35 (Fig. 4), which indicates that the resistan-
ces of both interfaces of the potential barrier simply add in
series, and a single p-n junction is less sensitive to disorder

than transport between the two interfaces of a potential

barrier. Fogler et al. introduced the parameter � ¼ n0n�3=2
i

to describe the clean or disordered transition in a single p-n
junction, where ni is related to the mobility by ni ¼ e

�h

[12]. According to Ref. [12], when � � 1 the ballistic
contribution in Eq. (3) dominates and the junction is in the
clean limit, whereas for � � 1, the diffusive contribution
in Eq. (3) dominates and the junction is in the disordered
limit. The threshold � ¼ 1 marks the transition where
ballistic contribution must be taken into account since it
is comparable to the diffusive contribution. In the follow-
ing, we refine this transition threshold experimentally.
From Fig. 4 and Table I, it seems that transport is indeed
well described by Eq. (3) when �> 3:5 but more poorly
for C1700 where � & 2, where we find that � is further
than 1 and has a large spread of values. In addition, Fogler
et al. predict that the diffusive contribution to the interface
resistance will be negligible for �> 10, which is reached
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FIG. 4. Symbols: Ratio � ¼ Rodd=ðRpn � RppÞ as a function of
top gate length L for the devices of Table I. Rpn is calculated with

c1 ¼ 1:35. The vertical lines show the width of the histogram of
� for densities such that jnbgj; jntgj> 1012 cm�2. The dashed

line at � ¼ 1 corresponds to perfect agreement between theory
and experiment, in the case where the total resistance is the sum
of the resistances of two p-n interfaces in series.
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FIG. 3 (color). (a) The series resistance 2Rodd of the barrier interfaces as a function of Vtg, for several values of Vbg for device A60
(corresponding densities nbg are labeled). The measured resistance 2Rodd (dots) is compared to the predicted value 2ðRpn � RppÞ using
either a diffusive model, Eq. (2) (dashed lines), or a ballistic model, Eq. (3), with the value c1 ¼ 1:35 chosen to best fit all six devices
(solid lines). (b) Same as (a) for device C540.
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in several of our devices for densities ntg > 3�
1012 cm�2. At these densities, in spite of our devices’
modest mobility, the junction can be considered as
disorder-free since the calculated ballistic contribution to
Rodd is 10 times higher than the diffusive one, which allows
us to make a rather accurate measurement of the ballistic
contribution alone in this clean limit, and match it well
with the ballistic terms in Eq. (3). In a recent experiment
where suspended top gates were used, for one sample the
agreement with Eq. (2)—the disordered limit—was very
good (sample S3 in Ref. [9]). This is due to a much larger
distance between the top gate and the graphene sheet, and
much smaller density range than in this work, likely due to
lower dielectric constant combined with mechanical insta-
bility of the top gate when applying higher voltages. These
two factors considerably reduce n0 (around 80 times),
which is not fully balanced by the cleaner graphene of
Ref. [9] (ni 2–5 times smaller). We estimate h�i 
 0:7 for
device S3 reported in Ref. [9]. Note that two other devices
on substantially cleaner graphene (S1 and S2 in Ref. [9])
support an interpretation of Klein tunneling with � ¼ 2:5
and � ¼ 4, respectively. From this work and from the
result of Ref. [9], one can see that the transition between
clean and disordered transport in p-n junctions seems to be
sharp: for �> 2:5 the clean limit applies, for �< 0:7 the
disordered limit applies, and in between neither limit is
valid [19].

Being sharply dependent on angle of incidence, trans-
port through potential steps in graphene should be sensitive
to the presence of a magnetic field, which bends electron
trajectories. For nbg ¼ �ntg the predicted interface con-

ductance in the clean limit is

GpnðBÞ ¼ Gpnð0Þð1� ðB=B?Þ2Þ3=4; (5)

where Gpnð0Þ is the conductance at zero field, B? ¼
@ðelÞ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ntg

q
, and l is the distance over which the po-

tential rises, which is proportional to the thickness d of the
oxide [13]. WemeasureR�1

odd as a function of magnetic field

B in two devices C540 and C1700 on the same graphene
sheet but with different top gate dielectric thickness d
(Table I). We use the experimental Gpnð0Þ and the best

parameter l to fit all curves within the same device (see
supporting material). The parameters l for C540 and
C1700 are found to be 65 and 55 nm, respectively, whereas
C1700 has the thicker dielectric (see Table I). Further
theoretical work is needed to explain this discrepancy.

In conclusion, we show evidence for Klein tunneling
across potential steps in graphene with a quantitative
agreement to a model with one free parameter describing
screening properties in graphene. The crossover between
clean and disordered regimes occurs as a function of the
parameter � around 1 as predicted by Fogler et al. [12].
More work is needed to go into the fully ballistic regime,
and also to measure directly the angle dependence of Klein
tunneling [3].
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Note added.—While this work was under review, we

became aware of related work by Young et al., in which
evidence is seen for ballistic transport across a full n-p-n
junction [20].
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