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A mesoscopic multicomponent lattice Boltzmann model with short-range repulsion between different

species and short (midranged) attractive (repulsive) interactions between like molecules is introduced. The

interplay between these composite interactions gives rise to a rich configurational dynamics of the density

field, exhibiting many features of disordered liquid dispersions (microemulsions) and soft-glassy mate-

rials, such as long-time relaxation due to caging effects, anomalous enhanced viscosity, aging effects

under moderate shear and flow above a critical shear rate.
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The rheology of flowing soft systems, such as emulsions,
foams, gels, slurries, colloidal glasses and related fluids,
exhibits a number of distinctive features, such as long-time
relaxation, anomalous viscosity, aging behavior, whose
quantitative description requires profound extensions of
nonequilibrium statistical mechanics [1]. The study of
these phenomena sets a pressing challenge for computer
simulation as well, since characteristic time lengths of
disordered fluids can escalade tens of decades over the
molecular time scales. To date, the most credited tech-
niques for computational studies of these complex flowing
materials are molecular dynamics (MD) and Monte Carlo
(MC) simulations [2]. Molecular dynamics in principle
provides a fully ab initio description of the system, but it
is limited to space-time scales significantly shorter than
experimental ones. Monte Carlo methods are less affected
by these limitations, but they are bound to deal with
equilibrium states. As a result, neither MD nor MC simu-
lations can easily take into account the nonequilibrium
dynamics of complex flowing materials on space-time
scales of hydrodynamic interest. In the last decade, a
powerful mesoscopic technique, based on minimal lattice
formulations of Boltzmann’s kinetic equation, has been
developed for ideal and complex fluids [3,4]. In the latter,
potential energy interactions are represented through a
density-dependent mean-field pseudopotential, �½��, and
phase separation is achieved by imposing a short range
attraction between the light and dense phases. In this
Letter, we provide the first numerical evidence that a
suitably extended, two-species, mesoscopic lattice
Boltzmann model, is capable of reproducing many features
of soft-glassy materials (microemulsions), such as struc-
tural arrest, anomalous viscosity, cage-effects and aging
under shear. The key feature of our model is the capability
to investigate the rheology of these systems on space-time

scales of hydrodynamic interest at an affordable computa-
tional cost.
The kinetic lattice Boltzmann equation takes the follow-

ing form [3]:

fisð~rþ ~ci;tþ�tÞ�fisð ~r;tÞ¼��t

�s
½fisð ~r;tÞ�fðeqÞis ð~r;tÞ�

þFis�t; (1)

where fis is the probability of finding a particle of species s
at site ~r and time t, moving along the ith lattice direction
defined by the discrete speeds ~ci with i ¼ 0; . . . ; b. The
left-hand side of (1) stands for molecular free-streaming,
whereas the right-hand side represents the time relaxation
(due to collisions) towards local Maxwellian equilibrium
on a time scale �s and Fis represents the volumetric body
force due to intermolecular (pseudo)-potential interactions.
The pseudopotential force within each species consists of
an attractive component, acting only on the first Brillouin
region (belt, for simplicity), and a repulsive one acting on
both belts, whereas the force between species is short-

ranged and repulsive: ~Fð ~r; tÞ ¼ ~Fa
s ð ~r; tÞ þ ~Fr

sð~r; tÞ þ ~FX
s ,

where

~Fa
s ð~r; tÞ ¼ Ga

s�sð~r; tÞ
Xb1
i¼0

wi�sð~r1i; tÞ ~c1i�t;

~Fr
sð~r; tÞ ¼ Gr

s�sð~r; tÞ
Xb1
i¼0

p1i�sð ~r1i; tÞ ~c1i�t

þGr
s�sð ~r; tÞ

Xb2
i¼1

p2i�sð ~r2i; tÞ ~c2i�t;

~FX
s ð ~ri; tÞ ¼ GAB

�0

�sð ~r; tÞ
Xb1
i¼0

wi�s0 ð ~ri; tÞ ~ci�t:

(2)

In the above, the indices k ¼ 1, 2 refer to the first and
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second Brillouin zones in the lattice, ~cki, pki, wi are the
corresponding discrete speeds and associated weights. In
the above,GAB � Gss0 ¼ Gs0s, s

0 � s, is the cross coupling
between species, �0 a reference density to be defined
shortly and, finally, ~rki � ~rþ ~cki�t are the displacements
along the ith direction in the kth belt and �0 marks the
density value at which nonideal effects come into play.
These interactions are sketched in Fig. 1. Following [5],
Taylor expansion of (2) to fourth order in �t delivers the
nonideal pressure tensor P��ð ~r; tÞ, namely,

P�� ¼
�
c2s�A þ c2s�B þ 1

2c
2
sGA1�

2
A þ 1

2c
2
sGB1�

2
B

þ c2s
GAB

�0

�A�B þ c4s�

�
��� � c4s���; (3)

where greek indices run over spatial dimensions, and

� ¼ �s¼A;BGs2

�
1

4
ðr�sÞ2 � 1

2
�s��s

�

þGAB

�0

½�A��B þ �B��A �r�Ar�B�; (4)

��� ¼ �s¼A;BGs2@��s@��s

þGAB

2�0

ð@��A@��B þ @��B@��AÞ: (5)

In the above equations, we have introduced the effective
couplings Gs1 ¼ Ga

s þGr
s and Gs2 ¼ Ga

s þ 12
7 G

r
s, s ¼ A,

B, respectively. The nonideal pressure splits into a local
(bulk) and nonlocal (surface) contributions, which fix the
surface tension� of the model. It is worth noting that, once
all the couplings are fixed, the value of � can be tuned by
changing the reference density �0. The repulsive intra-

species force ~Fr
s acts against the interspecies repulsive

force ~FX (proportional to 1=�0). Thus, for small �0, ~FX

dominates and a complete separation between the two
fluids is expected. This is the case of large and positive
�. On the other hand, for large �0, � becomes smaller and
even negative, see Fig. 2(a). Full details of the model are
given in [6]. Next, we discuss numerical simulations with
random initial conditions for the two densities �A and �B.
More specifically, we choose h�Ai ¼ h�Bi ¼ 0:612, with a
standard deviation �d ¼ 0:01. The set of parameters has

been chosen in such a way as to fulfill two physical con-
ditions: (i) both components A and B are away from phase-
transition; (ii) realize a surface tension of order �� 0:01
(lattice units), corresponding to a physical value below
10�4N, as it is appropriate for microemulsions. After a
short transient, the interfacial area reaches its maximum
value and progressively tends to decrease due to the effect
of surface tension. In the long term, this minimum-area
tendency would lead to the complete separation between
components A and B, with a single interface between two
separate bulk components. However, such a tendency is
frustrated (hence, strongly retarded) by the complex inter-
play between repulsive (short-range interspecies and mid-
range intraspecies) and attractive (short-range intraspecies)
interactions. The final result is a rich configurational dy-
namics of the density field, as the one shown in Fig. 2, right

FIG. 1 (color online). The two components A and B interact
via a repulsive pseudopotential, which supports a surface tension
�AB. Moreover, each component experiences an attractive inter-
action in the first Brillouin zone and a repulsive one acting on
both Brillouin zones. Each of these interactions can be tuned
through a separate coupling constant.
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FIG. 2 (color online). The nominal surface tension of the two-
component fluid as a function of the reference density �0 (left
panel). The coupling parameters areGa

A ¼ �12:55,Gr
A ¼ 11:70,

Ga
B ¼ �11:71, Gr

B ¼ 10:95, GAB ¼ 0:58. Above a critical value,
�crit � 0:72, the nominal surface tension turns negative. Right
panel: A typical snapshot of the density field �A at time 2� 106

(lattice units) at resolution 5122. Once the separation between A
and B phases has occurred, we obtain �A � 1:2 in the region
occupied by phase A, and �A � 0:1 elsewhere (the same values,
although complementary in space, occur for fluid B). The inter-
face width is w� 5 lattice points wide. A cut of the density
distribution across the interface shows that the profile is not
monotonic, with small bumps on both high and low-density ends
(bottom panel, dashed line, open symbols, LR). To investigate
the nature of these bumps, we have performed additional simu-
lations at higher resolution (black solid line, HR), by tuning the
parameters G and �0 as outlined in [5] (G

a
A ¼ �8:2, Gr

A ¼ 7:38,
Ga

B ¼ �7:29, Gr
B ¼ 6:47, GAB ¼ 0:49, �0 ¼ 0:83). The bumps

are indeed seen to attenuate at higher resolution, which points to
a numerical rather than physical origin. Because of the small but
positive value of � (for �0 ¼ 0:7, we find � ¼ 0:0525), the
system proves capable of supporting fairly complex metastable
density configurations.
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panel. In order to investigate the rheological properties of
the composite LB fluid, we put the system under a shear
flowUxðx; yÞ ¼ U0 sinðkyÞ, with k ¼ 1,Uy ¼ 0, by impos-

ing a volumetric body force constant in time, and measure

the response function RðtÞ ¼ �̂Uðk¼1;tÞ
U0

� �0

�� , where �̂Uðk; tÞ is
the Fourier transform of the line-averaged speed along the
x direction, �Uðy; tÞ ¼ P

xUðx; y; tÞ=Nx, and �� defines the
effective viscosity.

Under normal flow conditions, R ¼ 1, so that R � 1
provides a direct signal of enhanced viscosity and even-
tually, structural arrest. The main coupling parameters are
Ga

A ¼ �12:55, Gr
A ¼ þ11:80, Ga

B ¼ �11:70, Gr
B ¼

þ10:95, GAB ¼ þ0:58, and �0 ¼ 0:7. These parameters
correspond to both species in the dense phase, (no phase
transition), and surface tension below 10�3 N=m, hence
descriptive of glassy micro- or nanoemulsions. By letting
each species undergo phase transitions between a dense
and light phase, the same model could describe foamy
materials as well. The simulations are performed mostly
on a 1282 grid (except for the one reported in Fig. 2) up to
5� 106 LB time steps. In Fig. 3, we show the time evolu-
tion of the response RðtÞ, as well as an indicator of the
interface area, IABðtÞ ¼

P
x;yr�Ar�B. From this figure, we

appreciate a very dramatic drop of the flow speed in the
initial stage of the evolution, corresponding to a very
substantial enhancement of the fluid viscosity (about four
orders). The system remains in this ‘‘arrested’’ state for a
very long time, over three million time steps, until it
suddenly starts to regain its initial velocity through a
bumpy dynamics, characterized by a series of sudden
jumps [7]. These viscosity jumps signal ‘‘plastic events’’,

whereby the system manages to break the density locks
(cages) which blocked the flow in the initial phase. As a
result, the system progressively regains its capability to
flow. These plastic events are also recorded by the time
trace of the interface area IAB, which exhibits an alternate
sequence of plateaux followed by sudden down jumps, the
latter being responsible for the overall reduction of the
interface area as time unfolds. Visual inspection of the
fluid morphology confirms this picture. In the top panels
of Fig. 3, we show the density field in an arrested state at
time t ¼ 2� 105 (top, left) and in a flowing state, t ¼ 5�
105 (top, right). The left figure clearly reveals the existence
of ‘‘cages’’ in the density field configuration, which entrap
the fluid inside and consequently block its net macroscopic
motion. Interdomain relaxation can only take place in
response to ‘‘global moves’’ of the density field, i.e., the
cage rupture. We have also performed additional simula-
tions (not shown for space limitations) to investigate the
robustness of the response function RðtÞ towards changes
in the initial conditions. Consistently with the glassy nature
of the system, the plateau location is found to exhibit a
strong sensitivity to the noise realization in the initial
conditions, with some realizations showing early onset of
structural arrest (a few hundreds of thousands time steps),
and others spending nearly the entire simulation time-span
(up to five millions of time steps) without entering the
arrested state. Because of the mesoscopic nature of the
present model, the rupture of a single cage in the LB
simulation corresponds to a large collection of atomistic
ruptures, and, consequently, it leads to observable effects in
terms of structural arrest of the system. To the best of our
knowledge, this the first time that such an effect is observed
by means of a mesoscopic lattice Boltzmann model. To be
noted that the use of high-order lattices (24 speeds) is
instrumental to this program, since, by securing the iso-
tropy of lattice tensors up to 8th order, such lattice permits
to minimize spurious effects on the nonideal hydrody-
namic forces acting upon the discrete lattice fluid [5]. We
next inspect another typical phenomenon of soft-glassy
matter, namely, ageing. To this purpose, following upon
the spin-glass literature [8], we define the order parameter
	 � ð�A � �BÞ and compute its overlap, defined through
the autocorrelation function:

Cðtw; �Þ ¼
hPx;y 	ðx; y; twÞ	ðx; y; tw þ �Þi
hPx;y 	ðx; y; twÞ	ðx; y; twÞi ; (6)

where tw is the waiting time, � is the time lapse between the
two density configurations and brackets stand for averag-
ing over an ensemble of realizations. In Fig. 4, we show the
correlation function corresponding to different waiting
times tw (tw ¼ 5� 104, red, squares; tw ¼ 2� 105, green,
circles; and tw ¼ 3� 105, blue, triangles) for shear stress
U0 ¼ 0:02. Aging effects are clearly visible, in the form of
a slower than exponential decay of the correlation function,
which saturates to a nonzero value in the long-time limit
(broken ergodicity). In the inset of the same figure, we
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FIG. 3 (color online). The response function RðtÞ and the
surface indicator IABðtÞ as a function of time, (expressed in units
of 103 LB time steps). The forcing is U0 ¼ 0:1, the domain is
1282 and the other parameters are defined in the text. The sharp
decrease of the response function in the initial stage indicates the
structural arrest of the system, associated with an anomalous
enhancement of the flow viscosity, about 4 orders of magnitude
above the molecular value. In the left panel, cages are present,
which manage to ‘‘trap’’ microstructures inside. In the right
panel, the cages break down and the system is now able to
flow again.
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show the correlation function for tw ¼ 3� 105 and U0 ¼
0:03: with increasing shear stress the structural arrest dis-
appears, which is one of the most distinctive features of
flowing soft-glassy materials [9]. The main advantage of
the present lattice mesoscopic approach is to give access to
hydrodynamic scales at an affordable computational cost.
With reference to microemulsions (say water and oil), we
note that the presence of surfactants usually gives rise to
microscopic structures of the order of 50 nm in size [10].
These can be likened to the ‘‘blobs’’ observed in our
simulations. With reference to liquid water, we have ��
10�6 (m2=s), which provide a physical measure of the time
step�t� 4 ps, about 3 orders of magnitude larger than the
typical time step used in molecular dynamics. As a result, a
five-million time-step LB simulation spans about 20 
s in
physical time. Since the present LB method is easily
amenable to parallel computing, parallel implementations
will permit to track the time evolution of three-dimensional
microemulsions of tens of microns in size, over time spans
close to the millisecond, i.e., at space-time scales of hydro-
dynamic relevance. Summarizing, we have provided the
first numerical evidence that a two-species mesoscopic
lattice Boltzmann model with midrange repulsion between
like molecules and short-range repulsion between different
ones, is capable of reproducing many distinctive features of
soft material behavior, such as slow relaxation, anomalous
enhanced viscosity, caging effects, and aging under shear.
The present lattice kinetic model caters for this very rich
physical picture at a computational cost only marginally
exceeding the one for a simple fluid. As a result, it is hoped
that it can be used as an alternative or complement to
Monte Carlo calculations and/or molecular dynamics, for
future investigations of the nonequilibrium rheology of a
broad class of flowing disordered materials, such as micro-

emulsions, foams, and slurries on space and time scales of
experimental interest. For a better comparison with experi-
ments and other models [10], we are currently working at
deriving an explicit free-energy functional corresponding
to the phenomenological equations (2)–(5).
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FIG. 4 (color online). Aging of the system. Correlation func-
tion corresponding to different waiting times tw (tw ¼ 5� 104,
red, squares; tw ¼ 2� 105, green, circles; and tw ¼ 3� 105,
blue, triangles) with shear stress U0 ¼ 0:02. In the inset, we
show the correlation function for tw ¼ 3� 105 and U0 ¼ 0:03:
with increasing shear stress the structural arrest disappears.
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