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We use molecular dynamics simulations to investigate the coupling and decoupling between transla-

tional and rotational dynamics in a glass-forming liquid of dumbbells. We find that the coupling between

the translational (�Cq� ) and rotational (�2) relaxation times increases with decreasing temperature T,

whereas the coupling decreases between the translational (Dt) and rotational (Dr) diffusivities. In

addition, the T dependence of Dt decouples from that of 1=�2. We show that the decreasing coupling

between Dt and Dr is only apparent due to the inadequacy of the concept of the rotational diffusion

constant for describing the reorientational dynamics in the supercooled state. We also argue that the

coupling between �Cq� and �2 and the decoupling between Dt and 1=�2 can be consistently understood in

terms of the growing dynamic length scale.
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One of the puzzling features of glass-forming systems is
that upon cooling the translational dynamics appears to
decouple from the rotational dynamics [1–5]. At high
temperatures, the translational and rotational diffusion co-
efficients, Dt and Dr, respectively, are inversely propor-
tional to �=T, where � is the viscosity and T the
temperature, in agreement with the Stokes-Einstein (SE)
and the Stokes-Einstein-Debye (SED) relation. Below ap-
proximately 1:2Tg, with Tg the glass transition tempera-

ture, the SE relation is replaced by a fractional relation
Dt / ð�=TÞ�� with � < 1, implying a more enhanced
translational diffusion than predicted by the viscosity,
whereas Dr remains proportional to ð�=TÞ�1 down to Tg

[1,2]. On the other hand, recent computer simulations give
evidence for a stronger correlation between translational
and rotational mobilities at lower T [6,7], which is appar-
ently in contradiction with the mentioned decoupling be-
tweenDt andDr. In addition, an enhancement of rotational
diffusion relative to translation upon cooling is reported in
these simulations, which is a trend opposite to that ob-
served in experiments [1,2]. In this Letter, we report com-
puter simulation results for gaining more insight and
unified understanding of these coupling and decoupling
phenomena in the supercooled state.

The system we consider is the binary mixture of rigid,
symmetric dumbbell molecules, denoted as AA and BB
dumbbells, studied in Ref. [8]. Each molecule consists of
two identical fused Lennard-Jones (LJ) particles of type A
or B having the same mass m, and their bond lengths are
denoted by lAA and lBB. The interaction between two
molecules is given by the sum of the LJ interactions
V��ðrÞ between the four constituent sites, with the LJ

parameters ��� and ��� for �, � 2 fA; Bg taken from

Ref. [9], which are slightly modified so that V��ðrÞ and
V 0
��ðrÞ are zero at the cutoff rcut ¼ 2:5��� (see Ref. [8] for

details). Bond lengths are specified by a parameter � �
lAA=�AA ¼ lBB=�BB, and a sufficiently large value � ¼ 0:8
is chosen so that anomalous reorientational dynamics
caused by the so-called type A transition is absent [8,10].
The number of AA and BB dumbbells is NAA ¼ 800 and
NBB ¼ 200. In the following all quantities are expressed in
reduced units with the unit of length�AA, the unit of energy

�AA (setting kB ¼ 1), and the unit of time ðm�2
AA=�AAÞ1=2.

Standard molecular dynamics simulations have been per-
formed as in Ref. [9] with the cubic box of length L ¼
10:564 for 2:0 � T � 10. The longest runs were 2� 109

time steps, and we performed 16 independent runs to
improve the statistics. Such long simulations were neces-
sary to reach below the critical temperature Tc of the mode-
coupling theory [11], which we estimate as Tc � 2:10
based on an analysis similar to the one done in Ref. [9].
In experiments Tc is found to be� 1:2Tg [12], i.e., close to

the temperature at which the aforementioned decoupling
sets in [1]. We also introduce the onset temperature, found
to be Tonset � 4:0, below which correlators exhibit the two-
step relaxation, a characteristic feature of the glassy dy-
namics in which molecules are temporarily caged by their
neighbors. Hereafter, all quantities used in our discussion
refer to those for AA dumbbells, and the subscript AA shall
be dropped for notational simplicity.
In the present study we will characterize the transla-

tional dynamics by the incoherent center-of-mass density

correlator FC
q ðtÞ ¼ ð1=NÞPjhei ~q�½~r

C
j ðtÞ�~rCj ð0Þ�i, and the rota-

tional dynamics by C‘ðtÞ ¼ ð1=NÞPjhP‘½ ~ejðtÞ � ~ejð0Þ�i.
Here ~rCj ðtÞ and ~ejðtÞ denote the center-of-mass position

and the orientation of the jth molecule at time t, respec-
tively, and P‘ is the Legendre polynomial of order ‘. The
�-relaxation times �Cq and �‘ shall be defined via F

C
q ð�Cq Þ ¼

0:1 and C‘ð�‘Þ ¼ 0:1.
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Previous simulation studies have used various ways to
classify particle mobility [6,7,13–15]. In this Letter,
translational and rotational mobilities of individual mole-
cules shall be classified in terms of the first passage times,
�Cq;j and �‘;j, at which individual-molecule quantities

ei ~q�½~r
C
j ðtÞ�~rCj ð0Þ� (averaged over ~q having the same modulus

q) and P‘½ ~ejðtÞ � ~ejð0Þ� become zero for the first time. We

confirmed that �Cq / ð1=NÞPj�
C
q;j and �‘ / ð1=NÞPj�‘;j

hold, and hence, �Cq;j and �‘;j can also be regarded as

individual molecules’ relaxation times. In the following,
we will mainly refer to the structure factor peak position
q� ¼ 8:0 and ‘ ¼ 2 because of their experimental signifi-
cance [1,2,16].

The inset of Fig. 1 shows a scatter plot of �2;j versus �
C
q�;j

for T ¼ 2:0. We recognize that there is a strong correlation
between these two quantities, in particular, for the mole-
cules that move or rotate quickly. From such a scatter plot
we can calculate the correlation coefficient and its T de-
pendence is shown in the main panel of Fig. 1. We see that
the correlation between translation and rotation increases
quickly with decreasing T, showing the strong coupling
between these two types of motions at low temperatures, in
agreement with the findings in recent simulation studies
[6,7].

We also mention that the molecules that have a high
translational mobility are clustered in space, in agreement
with the findings for other glass formers [7,14,15], and the
same is true for those rotating quickly. This result is in
accord with the correlation shown in Fig. 1.

We next consider the translational (Dt) and rotational
(Dr) diffusion coefficients. Dt is determined via Dt ¼
limt!1�r2CðtÞ=6t of the center-of-mass mean-squared dis-

placement �r2CðtÞ ¼ ð1=NÞPjh½~rCj ðtÞ � ~rCj ð0Þ�2i. Dr is cal-

culated using the Einstein formulation [17], i.e., via
Dr ¼ limt!1�	2ðtÞ=4t of the mean-squared angular dis-
placement

�	2ðtÞ ¼ ð1=NÞX
j

X

�¼X;Y

h�	j;�ðtÞ2i: (1)

Here �	j;�ðtÞ ¼
R
t
0 dt

0!j;�ðt0Þwith!j;�ðtÞ denoting the �
component of the angular velocity of the jth molecule.
Note that for linear molecules, the summation over � is for
the two directions X and Y perpendicular to the Z axis
chosen along ~ejð0Þ [18].
Figure 2 shows the log-log plot of Dt (circles) and Dr

(diamonds) versus �Cq� . Thus, this graph mimics Fig. 5 of

Ref. [1] whereDt andDr for orthoterphenyl are traced as a
function of �=T. We have used �Cq� as a substitute for �=T

since accurate calculation of � is computationally chal-
lenging. However, this approximation should be quite ac-
curate since the �-relaxation time at the structure factor
peak position is known to track �=T [16].
From Fig. 2 we see that Dt / ð�Cq� Þ�1 holds at high T,

whereas it is replaced by a fractional relation Dt /
ð�Cq� Þ�0:83 for T & Tc. This anomalous behavior (the break-

down of the SE relation) and its occurrence near Tc �
1:2Tg are in agreement with experiments [1]. For Dr we

recognize that Dr / ð�Cq� Þ�1, and hence Dr / Dt, hold at

high T, but that this quantity strongly decouples from Dt

for T < Tonset. The fact that the T dependence of Dr is
weaker than the one of Dt is in contradiction to the trend
observed in experiments [1], but is in agreement with other
recent simulation studies [6,7].
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FIG. 1. Correlation coefficient between �Cq�;j and �2;j as a
function of 1=T. The inset is a scatter plot of �2;j versus �Cq� ;j
for T ¼ 2:0 on double logarithmic scales.
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FIG. 2 (color online). Log-log plot of the translational diffu-
sion coefficient Dt (circles, right scale), the rotational diffusion
coefficient Dr (diamonds, right scale, shifted so that Dt and Dr

agree at high T), and the inverse of the rotational relaxation time
1=�2 (filled squares, left scale) versus the �-relaxation time �Cq� .

The dotted straight lines refer to ð�Cq� Þ�x with the exponents x

cited in the figure. The arrows indicate the locations of Tonset and
Tc. Inset: Dt (circles) versus �Cq� from the main panel is com-

pared with h1=�Cq� ;ji (solid line) and 1=�Cq for q ¼ 1:2 (dashed

line), which are vertically shifted so that they agree with Dt at
high T.
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Let us notice that the experiment in Ref. [1] does not
directly probe Dr, but determines Dr from the measure-
ment of �2 via the relation Dr / 1=�2 predicted by the
Debye model. Thus, what is reported as Dr in Ref. [1]
corresponds in fact to 1=�2. In Fig. 2 we have also included
our simulation results for 1=�2 and we see that �2 corre-
lates well with �Cq� , in accord with our previous discussion

for the relaxation times, although a slight deviation from
the strict proportionality is discernible for T & Tc. Thus,
by identifying �Cq� with �=T, our simulation result for 1=�2
is in accord with the experiment [1] in which one finds
1=�2 / ð�=TÞ�1 down to Tg. Therefore, the decoupling of

Dr from 1=�2 shown in Fig. 2 only indicates that the Debye
model breaks down for T < Tonset, and hence, 1=�2 should
not be considered as being proportional to Dr in the super-
cooled state.

To understand why Dt and Dr behave so differently, we
analyze the breakdown of the Debye model in more detail.
Within the Gaussian approximation one has CG

‘ ðtÞ ¼
exp½�‘ð‘þ 1Þ�	2ðtÞ=4� [18]. The long-time behavior is
given by CG

‘ ðtÞ ¼ exp½�‘ð‘þ 1ÞDrt�, which agrees with

the prediction from the Debye model. From Fig. 2 one
therefore expects that the Gaussian approximation breaks
down for T < Tonset � 4:0, and this is indeed the case as
shown in Fig. 3(a).

Figure 3(a) also implies that for T < Tonset there exists a
time window during which �	2ðtÞ increases significantly
although the orientation of a molecule hardly changes.
The existence of such a window is demonstrated in
Fig. 3(b) for a representative temperature, from which
one recognizes that �	2ðtÞ starts to increase noticeably
at log10t � 1 whereas the average orientation 
ðtÞ ¼
ð1=NÞPjhcos�1½ ~ejðtÞ � ~ejð0Þ�i remains nearly constant up

to log10t � 2.
The appearance of the plateau in C2ðtÞ and 
ðtÞ for T <

Tonset reflects the librational motion of a molecule trapped
inside the cage, with the orientation ~ejðtÞ of the molecule

remaining close to ~ejð0Þ. (For the translational degrees of

freedom this corresponds to rattling of the center-of-mass
position.) If the average orientation during the librational
motion coincides with ~ejð0Þ, this gives rise to a diffusive

movement of �	j;ZðtÞ [17], which however does not con-

tribute to �	2ðtÞ, see Eq. (1). If, on the other hand, the
average orientation is tilted from ~ejð0Þ, one can show that

�	j;XðtÞ and �	j;YðtÞ also exhibit a diffusive movement.

Thus, a diffusive increase in �	2ðtÞ occurs even if the
molecule has not yet reoriented and is still performing
the librational motion inside the cage, and this effect ex-
plains the difference between log10�	

2ðtÞ and 
ðtÞ at
intermediate times as seen in Fig. 3(b). Dr from the
Einstein formulation is thus more affected by the libra-
tional motion than the real ‘‘reorientational’’ dynamics,
leading to a spurious ‘‘decoupling’’ between Dt and Dr.
Since there is no other proper way to define Dr, we con-
clude that the concept of the rotational diffusion constant is

inadequate for describing the reorientational dynamics in
the supercooled state.
Now let us turn our attention to the decoupling between

1=�Cq� andDt, and between 1=�2 andDt, which occurs near

and below Tc (see Fig. 2). The latter is known as the
‘‘translation-rotation decoupling.’’ It was conjectured that
such a decoupling arises because 1=�2 andDt reflect differ-
ent moments of the distribution of relaxation times, i.e.,
1=�2 / 1=h�2;ji while Dt / h1=�Cq�;ji [4]. The essential in-

gredient of this conjecture is the assumption that local
translational mobility is proportional to local rotational
mobility [4], which is justified from our simulation (see
Fig. 1). However, while �2 / h�2;ji has been confirmed

from our simulation, the T dependence of h1=�Cq�;ji is not
in accord with that of Dt as demonstrated in the inset of
Fig. 2. On the other hand, as also shown there, the inverse
of the �-relaxation time 1=�Cq for q ¼ 1:2 is found to track

Dt in the simulated T range.
That for T & Tc one findsDt / ð�Cq¼1:2Þ�1 whereasDt /

ð�Cq� Þ�0:83 can be understood in terms of the growing onset

length scale lonset of Fickian diffusion [19,20]. Here, lonset is
defined so that, if 2�=q < lonset, the relaxation time �Cq
decouples from the diffusivity Dt, and can be estimated
from the ratio RC

q of the product q2Dt�
C
q to the one at

some reference temperature Tref with a procedure detailed
in Ref. [20]. (In the present work we have chosen
Tref ¼ 5:0 and a criterion RC

q ¼ 1:2 for determining

lonset.) The resulting lonset as a function of 1=T is presented
in the inset of Fig. 4, from which one finds lonset � 3 for
1=T � 1=Tc ¼ 0:48. Thus, Dt / ð�Cq¼1:2Þ�1 for T & Tc
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FIG. 3 (color online). (a) The reorientational correlator C2ðtÞ
(solid lines) and the one calculated within the Gaussian approxi-
mation CG

2 ðtÞ (dashed lines) versus log10t for T ¼ 5:0, 3.0, 2.39,
and 2.18 (from left to right). (b) The average orientation 
ðtÞ (left
scale) and the logarithm of the mean-squared angular displace-
ment log10�	

2ðtÞ (right scale) for T ¼ 2:18.
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since the associated length scale 2�=1:2 � 5:2 exceeds
lonset, whereas �

C
q� decouples from Dt since 2�=q� � 0:8

is smaller than lonset.
To what extent the dynamics occurring on different

length scales are correlated is examined in the main panel
of Fig. 4, where correlation coefficients between �Cq�;j and

�Cq;j’s for q ¼ 4:2, 2.4, and 1.2 are plotted with solid lines.

The mentioned decoupling between �Cq� and �Cq¼1:2 is re-

flected in the small value (&0:1) of the corresponding
correlation coefficient. On the other hand, one infers
from Fig. 4 that a significant correlation, characterized,
e.g., by the correlation coefficient exceeding 0.2, develops
between �Cq�;j and �Cq¼4:2;j for 1=T * 0:4, where lonset be-

comes larger than the associated length scale 2�=4:2 �
1:5. Similarly, one finds that the correlation coefficient
between �Cq�;j and �Cq¼2:4;j exceeds 0.2 only for 1=T *

0:5, where lonset is larger than 2�=2:4 � 2:6. Thus, though
originally introduced as the onset length scale of Fickian
diffusion, lonset also provides a coherent length in the sense
that the dynamics occurring on length scales smaller than
lonset develop significant correlations.

Let us estimate the length scale associated with �2
utilizing such a ‘‘coherent length’’ lonset. One finds from
Fig. 1 that the correlation coefficient between �Cq�;j and �2;j
exceeds 0.2 for 1=T * 0:4. According to the mentioned
interpretation of lonset, the dynamics responsible for �Cq� and

�2 become correlated if both of their characteristic length
scales become smaller than lonset. Thus, the length scale
associated with �2 can be estimated as �1:5 which is
determined by lonset at 1=T � 0:4 (see Fig. 4). This ex-
plains why the correlation coefficient between �2;j and

�Cq¼1:2;j is small (&0:1) as shown with the dashed line in

Fig. 4, i.e., why 1=�2 decouples from ð�Cq¼1;2Þ�1 / Dt.

Thus, the translation-rotation decoupling between Dt

and �2 should more properly be understood as the decou-
pling of the dynamics occurring on different length scales,
which arises due to the growing dynamic length scale. This
notion also explains the decoupling between �Cq� and Dt

(the breakdown of the SE relation), as well as the
translation-rotation ‘‘coupling’’ between �Cq� and �2 occur-

ring on comparable length scales.
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FIG. 4 (color online). Correlation coefficients between �Cq� ;j
and �Cq;j’s (solid lines) for q ¼ 4:2, 2.4, and 1.2 versus 1=T.

The dashed line denotes the correlation coefficient between �2;j
and �Cq¼1:2;j. The inset exhibits the length scale lonset introduced

in the text as a function of 1=T.
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