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The mechanical response of single-wall carbon nanotubes to radial compression is investigated via

atomic force microscopy (AFM). We find that the force F applied by an AFM tip (with radius R) onto a

nanotube (with diameter d), rescaled through the quantity Fd3=2ð2RÞ�1=2, falls into a universal curve as a

function of the compressive strain. Such universality is reproduced analytically in a model where the

graphene bending modulus is the only fitting parameter. The application of this model to the radial

Young’s modulus Er leads to a further universal-type behavior which explains the large variations of

nanotube Er reported in the literature.
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Since the early 1990s, the electronic and structural
properties of single-wall carbon nanotubes (SWNTs)
have been thoroughly investigated and some applications
of those properties have been proposed [1–18]. Regarding
SWNT mechanical properties, most of the attention has
been given to their large resistance to axial tension
[1,3,4,6], even though several electromechanical effects
have been observed on radially compressed SWNTs [14–
18]. A universal and consistent understanding of the me-
chanical properties of SWNT under radial compression is
also still missing: for instance, reported values of the radial
Young’s modulus Er vary by up to 3 orders of magnitude
[5,7–13]. The present work brings a unifying picture to the
process of radial compression (deformation) of SWNTs,
where experimental data are analyzed through a rescaling
model yielding a universal-type behavior. Specifically, we

find that the quantity Fd3=2ð2RÞ�1=2, where F is the force
applied by an atomic force microscopy (AFM) tip (with
radius R) and d is the SWNT diameter, is a universal
function of the compressive strain. The application of the
same model to the radial Young’s modulus Er leads to a
further universal-type behavior that explains the large var-
iations of the SWNTs Er reported in the literature [5,7–13].
Finally, the implications of such universal-type behavior to
nanometrology are briefly discussed.

Sample growth was accomplished on a 100 nm-thick
SiOx layer on top of a Si substrate using a chemical vapor
deposition procedure which selectively produces SWNTs
[19]. Several of these SWNTs were investigated by scan-
ning probe microscopy (SPM) (Nanoscope IV MultiMode
SPM, from Veeco Instruments). The SPM measurements
were carried out in air (in most cases), or under dry nitro-
gen atmospheres (in some cases) with the help of a home-
made environmental control chamber. Silicon and silicon
nitride cantilevers with nominal spring constants k from
0.08 to 0:25 N=m, nominal radii of curvature R � 30 nm
and resonant frequencies !0 from 20 to 40 kHz were
employed throughout this work for AFM imaging (contact
and intermittent contact modes) and compression (defor-

mation) experiments. More accurate estimations of k and R
were carried out by the use of the Sader’s method [20] and
by the analysis of SWNT images, respectively [10,21].
Figure 1(a) and the inset of Fig. 1(b) illustrate the

experimental procedure employed to acquire compression
(deformation) data throughout this work. Instead of using a
nanoindentation protocol, which requires both sub-nm pre-
cision and stability on the AFM tip positioning, employed
in all experimental works published so far [10,12,14–16],
SWNTs were simply imaged in AFM contact mode, as
seen in Fig. 1(a). During image acquisition, the SWNTaxis
is kept perpendicular to the fast scan (horizontal) direction
while the slow scan (vertical) axis is disabled; i.e., the same
region of the SWNT is probed in the entire image.
Concomitantly, the SWNT compression is varied through
changes on the AFM tip normal force F at finite time
intervals. Therefore, beginning at the top of Fig. 1(a), the
compression force is sequentially increased (downward)
from 2 up to 25 nN. In such a way, the radial deformation
of each nanotube due to a given tip compression force can
be determined straightforwardly through the apparent
height h of each nanotube in the AFM image [see inset
of Fig. 1(b)]. The plot in Fig. 1(b) summarizes this new
methodology showing the observed height h of several
SWNTs as a function of the compression force F exerted
by the AFM tip. It is clear in Fig. 1(b) that all SWNTs are
deformed by the tip during the imaging process, with a
pronounced decrease of SWNT height as the compression
force is increased. A plot of the compressive force F versus
SWNT deformation is shown in Fig. 2(a) [22]. Inspecting
Fig. 2(a), apart from the obvious increase of measured
deformation with the applied force, no other universal
behavior can be inferred from its scattered data. Even a
plot of F versus radial strain (data not shown) for each
SWNT does not provide any indication of a unifying
picture.
The standard methodology used in experimental works

dealing with radial deformation of nanotubes [9,10,12] is
based on the Hertzian model (and some variations) of bulk
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deformation under an applied load [23]. The Hertzian
model, however, considers a constant value of the radial
Young’s modulus Er. This assumption is unrealistic for
SWNTs: in this case, as we will show below, Er is a
strongly varying function of the radial strain s. There-
fore, we developed a new model that does not assume a
constant Er, as follows.

As a starting point of the model, we consider the results
of first-principles calculations that predict that the com-
pressive force per unit length on a SWNT, F=l, as a
function of its local height, y, can be approximated by
F=l ¼ a=y2 if y < d, where d is the original nanotube
diameter [18,24]. For y > d we assume that the force is

null [25]. These results are consistent with a continuum
model [24], and the constant a can be related to the
graphene bending modulus � [28] through a ¼ ���,
where � is the area density of carbon atoms in graphene.
The inset of Fig. 1(b) shows that, during the AFM imaging
process, the nanotube height y varies from a minimal value
h, the measured height, up to the maximal value d, follow-
ing the AFM tip morphology. Therefore, the total force F is

FIG. 2 (color online). (a) Applied compressive force F versus
the observed deformation of several SWNTs. (b) Dependence of
the quantity Fd3=2ð2RÞ�1=2 on the radial strain s ¼ 1� h=d.
The line corresponds to Eq. (1) with a ¼ 1:2� 10�18 J.
(c) Dependence of the quantity ErðsÞd3 (where Er is the radial
Young’s modulus) on s for several SWNTs. The line corresponds
to Eq. (2) with the same a as above.

FIG. 1 (color online). (a) AFM images showing the same
region of three SWNTs. From top to bottom, the compressive
force exerted by the tip sequentially increases from 2 up to
25 nN. At each force variation step, the sample position is
intentionally shifted laterally in order to distinguish each com-
pression regime. (b) Observed height h of several SWNTs versus
compressive force F (different AFM tips were used to collect
these data). Inset: schematic drawing identifying all relevant
parameters: the compressive force F, the AFM tip radius R,
the SWNT diameter d, and its measured height h.
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calculated through integration over the AFM tip-SWNT
contact length, resulting in

F ¼ ð2R=d3Þ1=2 a

ð1� sÞ3=2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2sþ s2
p

þ tg�1

� ffiffiffiffiffiffiffiffiffiffiffiffi
s

1� s

r ��
;

(1)

where R is the AFM tip radius [see inset of Fig. 1(b)] and s
is the radial strain [s ¼ ðd� hÞ=d]. Equation (1) shows

that the rescaled quantity Fd3=2ð2RÞ�1=2, in energy units,
should be universal to any SWNT, depending only on its
radial strain s and the (universal) constant a.

In order to test the scaling property predicted by Eq. (1),

we plot in Fig. 2(b) the rescaled quantity Fd3=2ð2RÞ�1=2 as
a function of the strain s, for the same data of Fig. 2(a). The
universal-type behavior is evident in Fig. 2(b), as the data
for all nanotubes fall into a single curve. Moreover,
the analytical result for F from Eq. (1) is also plotted in
Fig. 2(b) (black line) where we take the value of a ¼ 1:2�
10�18 J from the ab initio calculations of Ref. [18]. The
agreement between theory—which has a single parameter
obtained from first principles—and experiment is remark-
able for moderate SWNT strain (s < 0:5). For larger values
of strain the universal-type behavior seems to hold for the
experimental data, but it is not well described by the
theoretical model of Eq. (1) anymore.

The strong correlation between experimental data and
theory in Fig. 2(b) for small values of strain can also be
used to estimate the value of a, and consequently the
graphene bending modulus �. A nonlinear fitting of the
experimental data of Fig. 2(b) for s < 0:25 with Eq. (1)
results in a ¼ ð1:26� 0:02Þ � 10�18 J, or, equivalently, in
� ¼ a=ð��Þ ¼ ð66� 1Þ meVnm2, where we used an
area density of carbon atoms in graphene � ¼
38:12 nm�2. This is in good agreement with another recent
estimate of � [ð55� 10Þ meVnm2] from AFM measure-
ments in double-wall nanotubes [28].

The model described by Eq. (1) can also be applied to
the analysis of SWNT radial Young’s modulus Er. From
the definition, ErðsÞ ¼ F=ðAsÞ, where A is the tip-nanotube
contact area [29]. Therefore, it follows that

ErðsÞ ¼ 6a

5�d3s5=2ð1� sÞ3=2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2sþ s2
p

þ tg�1

� ffiffiffiffiffiffiffiffiffiffiffiffi
s

1� s

r ��
:

(2)

Equation (2) leads to three interesting conclusions:
(i) The radial Young’s modulus of a SWNT is not a
constant, but it depends on the nanotube deformation
(strain s). Indeed, Eq. (2) indicates arbitrarily large Er

values for either very small or very large SWNT strain,
and modest values for moderate strain. (ii) Keeping the
strain fixed, the radial Young’s modulus follows a 1=d3

behavior (in previous works, there has been some debate
whether Er varies with 1=d, 1=d2, or 1=d3 [5,7–13]);
(iii) The quantity ErðsÞd3 should also present a universal-

type behavior, depending only on SWNT strain. In order to
verify such behavior, a ‘‘semiexperimental’’ radial Young’s

modulus E
Exp
r ðsÞ was evaluated using its definition above

[E
Exp
r ðsÞ ¼ FExp=ðAsÞ, where FExp is the experimental

force data] and the product ErðsÞd3 is shown in Fig. 2(c)
for all SWNTs. Again, a universal-type behavior is evident
in this figure, where the black line represents the theory
from Eq. (2) (also calculated using a ¼ 1:2� 10�18 J,
from Ref. [18]). Once again, the agreement between ex-
perimental data and theory is evident up to moderate
SWNT strain values. It is also noteworthy that both the
results in Fig. 2(c) and the conclusion (i) above explained
the large variation on the measured Er values reported in
the literature, from a few GPa range up to more than a
thousand GPa [5,7–13]. These values should be larger for
very small, or very large, SWNT deformations, and smaller
for moderate deformations, which again is in agreement
with reported values in the literature [10,12].
Nanometrology is certainly one of the most difficult, but

necessary, challenges of nanotechnology. The universal-
type behavior of SWNT under radial compression de-
scribed in this work may represent a step forward in this

path. Consider, for example, the quantity Fd3=2ð2RÞ�1=2,
which is a function of SWNT strain only and, thus, should
be constant for a fixed strain value. It correlates three
important parameters at the nanoscale: force, in the nano-
Newton range, and both SWNT and AFM tip diameters,
also in the nanometer range. In other words, for a given
strain, if two of those quantities are known, the third can be
determined. For instance, if the SWNT diameter is pre-
cisely determined via Raman spectroscopy [1] and the
AFM tip geometry is well defined, or determined via
high-resolution electron microscopy, the radial compres-
sion experiment can be seen as a gauge for precise force
determination at the nanoscale. Alternatively, if force and
tip geometry are known, this methodology could be used
for precise determination of SWNT diameter. As an illus-
tration of the interplay among these quantities and corre-
spondence between theory and experiment, Fig. 3 shows
the experimental applied compressive force F versus the

rescaling quantity ðR=d3Þ1=2 for two specific values of
strain [s ¼ 0:25 (squares) and s ¼ 0:15 (circles)]. The
lines in Fig. 3 are linear fits to the experimental data and
their angular coefficients � are �0:25 ¼ ð3:9� 0:4Þ and
�0:15 ¼ ð1:8� 0:2Þ, respectively. For these strain values,
the theory [through Eq. (1)] predicts �0:25 ¼ 3:4 and
�0:15 ¼ 2:0, indicating, once more, a good agreement be-
tween experiment and theory. Therefore, the plot in Fig. 3
could be employed for accurate determination, or predic-
tion, of the values of any of the three parameters (F, d, and
R), if two of them are known, in a similar way of Kataura
plots, which correlate SWNT transition energy, its diame-
ter, and Raman shift [1].
In conclusion, this work has shown that through an

appropriate rescaling procedure, SWNTs present a

PRL 102, 025501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

16 JANUARY 2009

025501-3



universal-type behavior when radially compressed by an
AFM tip. The developed experimental procedure (AFM
imaging of the same SWNT region with increasing com-
pressive forces) is quite simple, fast, and precise, allowing
accurate monitoring of the deformation process. In addi-
tion, from an extension of the developed theory and the
definition of Young’s modulus, it was found that the radial
Young’s modulus is not a constant for a given SWNT, but,
rather, it is dependent on nanotube strain, explaining the
wide variation for this parameter found in the literature.
Finally, possible implications of the present work to the
nanometrology field were discussed, suggesting a formal
relationship between the applied force, SWNT diameter,
and AFM tip radius, which enables accurate determination
of one of them if the other two are precisely known.
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