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We study the threshold for chaos and its relation to thermalization in the 1D mean-field Bose-Hubbard

model, which, in particular, describes atoms in optical lattices. We identify the threshold for chaos, which

is finite in the thermodynamic limit, and show that it is indeed a precursor of thermalization. Far above the

threshold, the state of the system after relaxation is governed by the usual laws of statistical mechanics.
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Introduction.—We study the threshold for chaos and the
ability to thermalize of the 1D mean-field Bose-Hubbard
model (BHM) [1]. The study of thermalization in nonlinear
systems dates back to the early work of Fermi, Pasta, and
Ulam (FPU) [2] on a nonlinear string, modeled by anhar-
monically coupled oscillators. It was expected that for a
large number of degrees of freedom, even small nonline-
arities would cause the system to thermalize, resulting in
energy equipartition. However, equipartition was not ob-
served. The absence of thermalization was eventually ex-
plained in two complementary ways: one in terms of
closeness to an integrable system, the Korteweg–de Vries
model [3], and another in terms of a chaos threshold given
by the theory of overlapping resonances put forth by
Chirikov and Israilev [4,5].

Since then further studies on thermalization and ap-
proach to equilibrium have been carried out in several
classical field theories, including recent studies on the
classical �4 model [6], nonlinear Klein-Gordon (NLKG)
equation [7], nonlinear Schrödinger equation (NLSE)
[8,9], discrete nonlinear Schrödinger (DNLS) equation
[9,10] equivalent to BHM, and integrable discrete non-
linear Schrödinger (IDNLS) equation [9].

No conventional thermalization is expected in the NLSE
and IDNLS, which are both integrable. In NLKG, like in
FPU, the ability of the system to reach thermal equilibrium
in the course of time evolution emerges only when the
degree of nonlinearity exceeds a certain critical value (see
[5,11] for the thermalization threshold in FPU). On the
contrary, the �4 model eventually reaches equilibrium
regardless of how small the nonlinearity is. In this Letter
we show that the BHM (along with the equivalent DNLS)
belongs to the former class.

Furthermore, we have compared two quantitative mea-
sures of thermalizability: maximal Lyapunov exponent
(whose positivity is a signature for chaos) and spectral
entropy (which provides a distance to thermal equilib-
rium). Both measures show a sharp threshold as one varies
the nonlinearity strength, and the two thresholds are un-

deniably close. Furthermore, we assert that the chaos
threshold is governed only by the parameters and observ-
ables that are finite in the thermodynamic limit, and as a
result it remains finite in that limit.
Our program is similar to a comprehensive comparison

between FPU and �4 [12], where, however, the existence
of the thermalization threshold in FPU is denied.
In this Letter we observe thermal behavior in time-

averaged mean-field quantities. Note that in recent work
on thermalization in quantum systems, thermal properties
emerge from individual quantum stationary states [13,14].
Studies on the semiclassical regime suggest that the two
are related, although open questions remain [13].
Empirically, our system describes the motion of bosonic

atoms in a one-dimensional tight-binding optical lattice
[1,15].
System of interest.—We study the mean-field dynamics

of an interacting one-dimensional Bose gas on a lattice [1D
Bose-Hubbard model (BHM)] with periodic boundary con-
ditions. The Hamiltonian in the momentum representation
is

H ¼ X

n

�
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2
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where the indices span the range n; i; j ¼
0;�1;�2; . . . ;� Ns�1

2 (Ns is supposed to be odd).

Throughout the text the wave function c n is normalized
to unity:

P
njc nj2 ¼ 1. The bare frequency of each mo-

mentum mode is given by !n ¼ �2J cosð2�nNs
Þ, and the

coupling constant is �0 ¼ UNa=Ns. Here J and U are
the nearest-neighbor site-hopping and on-site repulsion
constants of the standard Bose-Hubbard model, respec-
tively, and Na is the number of atoms. The canonical pairs
are Qn ¼ c n, P n ¼ i@c �

n, and the equations of motion
are given by @

@t c n ¼ � i
@

@H
@c �

n
. We define the dimensionless
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nonlinearity parameter � to be the ratio between the typical
interaction energy per site, UðNa=NsÞ2, and the hopping
energy per site, JNa=Ns:

� � �0

J
� UðNa=NsÞ

J
: (2)

Chaos criterion and chaos threshold from Lyapunov
exponents.—The standard signature of the chaotic nature
of a region in phase space is that the separation between
initially close trajectories grows exponentially with time,
for typical trajectories, as captured by a positive maximal
Lyapunov exponent (MLE). In regular regions the separa-
tion grows linearly [16], resulting in zero MLE. As we
increase � in our system, we expect the phase space to
change from being dominated by regular regions for small
� to being dominated by chaotic regions for large �. In this
section, we use the MLEs to quantify this transition to
chaos, which, as we will see in the subsequent section,
coincides with a relatively broad change from untherma-
lizability to complete thermalizability.

Consider two trajectories xðtÞ and ~xðtÞ with initial points
x0 and ~x0, respectively. The separation �xðtÞ ¼ ~xðtÞ � xðtÞ
initially satisfies a linear differential equation, and the
duration of this linear regime grows without bound as the
initial separation ~x0 � x0 goes to zero. The finite-time
maximal Lyapunov exponent (FTMLE) corresponding to
the phase-space point x0 [17] is

�tfinðx0Þ ¼ lim
~x0!x0

1

tfin
ln
k ~xðtfinÞ � xðtfinÞ k

k ~x0 � x0 k : (3)

The limit tfin ! 1 gives the MLE, �1ðx0Þ. The FTMLEs
are themselves of intrinsic interest, and in the chaotic
regime the average over the FTMLE converges to the
standard MLE [17,18]. We chose a convenient quantum

mechanical metric, k ~x�xk2¼P
nj ~c n�c nj2 (see [19]).

Initially, we study the FTMLE on a 21-site lattice for a
class of initial conditions where only the k ¼ 0;�1 modes
are occupied. In this subspace we sample uniformly from
the intersection of the microcanonical shells in energy and
norm; the energy is chosen to be the infinite temperature
energy of the subsystem, and the norm is 1. For each value
of �, we sample 100 points, which we set as the initial
points x0. To each initial point we add a small random
vector, as little as machine precision allows, to obtain the
corresponding ~x0’s. Each pair we propagate for a time tfin,
short enough to ensure linearity of the evolution of �xðtÞ
but long enough to be able to clearly distinguish chaotic
trajectories from regular ones on a plot of ln�xðtÞ versus t:
the former increase linearly, and the latter logarithmically
[18]. We also verify that the average of the FTMLE’s over
the ensemble of initial conditions does not depend on tfin as
long as both criteria above are satisfied. In Fig. 1 the
averaged FTMLEs are plotted as a function of the interac-
tion strength. There is a distinct regime with zero
Lyapunov exponent for small � & 0:5 and a strongly cha-

otic regime for � * 1 where all initial conditions have
positive exponent.
Thermalizability threshold from spectral entropy.—For

coupled anharmonic oscillators, as in the FPU study, en-
ergy equipartition among the normal momentum modes
signified thermalization. In the BHM, the additional con-
servation of the norm modifies the quantity that is equi-
partitioned. To determine the best measure for the
equipartition we use the variational Hartree-Fock
Hamiltonian [20], HHF ¼ P

n@!
HF
n jc nj2, where the set of

Hartree-Fock energies f@!HF
n g was regarded as the varia-

tional field. This procedure gives @!HF
n ¼ @!n þ

2�0Na ��, where � is the chemical potential.
The Hartree-Fock approximation is known to overesti-

mate the interaction energy in the regime of strong inter-
actions. For this reason, we determine the temperature T
and the chemical potential using the time-averaged nu-
merical kinetic energy (along with the norm) instead of
the total energy. The temperature and the chemical poten-
tial were computed individually for each initial condition
used.
The new quantity to be equipartitioned is the distribution

of the Hartree-Fock energy, qnðtÞ ¼ jc nðtÞj2@!HF
n =P

n0 jc n0 ðtÞj2@!HF
n0 . A quantitative measure of the distance

from thermodynamic equilibrium is the spectral entropy
SðtÞ ¼ �P

nqnðtÞ lnqnðtÞ, or more conveniently the nor-
malized spectral entropy [11],

�ðtÞ ¼ Smax � SðtÞ
Smax � Sð0Þ ; (4)

where Smax ¼ lnNs is the maximum entropy, which occurs
for complete equipartition of qn. In Fig. 1 the spectral
entropy of the final time-averaged state, also averaged
over 100 initial states (drawn from the same ensemble
that was used for the Lyapunov exponent calculation) is
plotted for each value of �. For large nonlinearities, � * 1,
the normalized spectral entropy goes to zero, indicating
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FIG. 1 (color online). Averaged finite-time maximal Lyapunov
exponent (FTMLE), �, and normalized spectral entropy � as
functions of the nonlinearity �. Ns ¼ 21. Inset: Normalized
spectral entropy of final time-averaged state versus FTMLE
for each of the 100 initial conditions used to compute the
averaged value for � ¼ 0:36; 0:54; 0:72; 0:9.
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remarkable agreement between the final state and the
thermal predictions. Note that this corresponds to the chaos
threshold observed previously. Furthermore, we verified
that for large �, the fluctuations in kinetic energy scale asffiffiffiffiffiffi
Ns

p
, confirming their thermal nature. For � & 0:5 the

normalized spectral entropy is above 0.5 signifying that
during the time evolution the state of the system remains
close to the initial state. As seen in the inset of Fig. 1, an
individual initial state with larger FTMLE tends to have
lower spectral entropy, i.e., to relax to a state which is
closer to the thermal one. Beginning at � � 0:5, where the
averaged FTMLE is substantially nonzero, some of the
initial states thermalize completely.

In Fig. 2, the initial and time-averaged momentum dis-
tributions of a representative state are plotted for � ¼ 0:09,
0.36, and 0.9, along with the thermal Hartree-Fock predic-
tions, hjc nj2i ¼ ðT=NaÞ=ð@!n þ 2�0Na ��Þ.

Chaos threshold for different lattice sizes.—Let us start
from the notion that the parameter � introduced in (2) is the
only dimensionless combination of the parameters of the
problem that remain finite in the thermodynamic limit,
Ns ! 1, Na=Ns ¼ const, J ¼ const, U ¼ const.
Curiously, the chaos threshold for Ns ¼ 21 is at � � 0:5,
i.e., �� 1. Another observation comes from a related work
[8] on chaos threshold in NLSE with hard-wall boundary
conditions. The authors find that the boundary between
regular and chaotic motions of momentum mode, n, is
given by ð�0jc nj2Þ=ð@!1nÞ � 1, where @!1 is the lowest
excitation energy, e.g., the energy of the first excited mode

in the case of the Hamiltonian (1). Assuming that the shape
of the momentum distribution jc nj2 as a function of n=Ns

should be fixed in the thermodynamic limit, the left-hand
side of the above relationship also remains finite. These
observations lead to a conjecture that the chaos criterion
involves only the intensive parameters and observables,
i.e., those that are finite in the thermodynamic limit.
Our test for the above conjecture is based on the fact that

for a chaotic motion the majority of the trajectories cover
the whole available phase space, and as a result the MLE
becomes, for a given set of parameters, a function of just
the conserved quantities: energy and norm. This implies
that for the same energy-per-particle, norm, and nonline-
arity parameter �, the Lyapunov exponents for different
lattice sizes should be similar. In Fig. 3(a) the averaged
FTMLE is plotted for three different lattices, Ns ¼ 11, 21,
and 41. For each �, the same energy-per-particle (in units
of J) is used for all three lattices. The corresponding
energies are shown by the solid line in Fig. 3(b). From
the plot it is indeed evident that the averaged FTMLE is
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FIG. 2 (color online). Initial, final, and Hartree-Fock thermal
momentum distributions for � ¼ 0:09; 0:45; 1:8, starting from
the same initial state. N ¼ 21. The initial state is a representative
state and the final state is time averaged. �T is the total energy
per particle.

FIG. 3 (color online). (a) Averaged finite-time Lyapunov ex-
ponent, �=J, for three different system sizes, Ns ¼ 11; 21; 41.
For each �, the same energy per particle was used for each lattice
size. (b) Contour lines of the Lyapunov exponent versus the
nonlinearity � and energy per particle, �T ¼ ðH �H0Þ=Na,
where H is the Hamiltonian (1), and H0 ¼ �2J þ ð1=2Þ�0 is
the ground-state value of H. Ns ¼ 11. The first contour line
corresponds to �c ¼ 0:02. The circles and dotted line give the
total energies (per particle) used in the calculation for (a).
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universal with respect to the size of the lattice and that the
values for Ns ¼ 11 already give a very good estimate of
both the value of the averaged FTMLE and the threshold.

Two parametric theory of the chaos threshold.—The
universality observed above suggests the most relevant
pair of variables for mapping the chaos threshold, namely
� and the total energy per particle, �T=J. (In FPU one
variable is sufficient, ultimately because there is one less
conserved quantity.) In Fig. 3(b) contour lines of the aver-
aged FTMLE for Ns ¼ 11 are plotted versus the nonline-
arity parameter and energy per particle. We use two sets of
initial conditions with n ¼ 0;�1 and n ¼ 0;�1;�2 mo-
mentum modes occupied.

One can observe a plateau in the averaged FTMLE for
� & �c ¼ 0:02, given by the solid line. After crossing the
critical line the averaged FTMLE increases with uniform
slope. The critical line resembles a hyperbola with the
point of closest approach to the origin at ð�; �TÞ �
ð0:5; 0:2JÞ, so that the hopping parameter J appears to be
a relevant energy scale. This is probably not an accident:
for �T � J the dispersion law !n begins to deviate from
the (quadratic) dispersion law of the integrable NLSE with
periodic boundary conditions.

Summary and outlook.—In this Letter we consider the
dynamics of atoms in an optical lattice from the point of
view of chaos theory. We identify the threshold for chaos
and show that it corresponds to the onset of thermalization.
Far above the threshold, the final state of the system is
governed by the usual statistical mechanics.

We see two potential applications of our results. First, in
quantum nonequilibrium dynamics, our results can serve as
a guide for identifying the dominant effects preventing
thermalization in optical lattices. Based on the studies of
the validity of the classical field theory for Bose conden-
sates [21] our results will apply for the lattice site occupa-
tions satisfying Na=Ns � maxð�; 1Þmaxðð�n=NsÞ�1; 1Þ,
where �n is the typical width of the momentum distribu-
tion. We note that the Mott regime, Na ¼ integer� Ns,
�n ¼ Ns, U=J 	 2:2Na=Ns [22], lies well outside of the
above criteria.

Second, in chip-based atom interferometry with dense
Bose condensates [23], our results illustrate the fact that
nonlinear instabilities cannot affect the performance of
interferometric schemes. Recall that the force fields used
in interferometry are usually periodic with a period L ¼
�=2, where � ¼ 2�=k, and k is the wave vector of light
used to generate the interferometric elements. For spatially
uniform initial conditions, the time evolution can be de-
scribed by a NLSE with periodic boundary conditions. In
turn, the NLSE constitutes the continuum limit of our
model, Ns ! 1, where we keep constant the ground-state
chemical potential �0, the size of system L, and the ratio
between the energy per particle ET and the so-called recoil
energy ER � @

2k2=2m ¼ �2J=Ns. In this limit both the
parameter � and the �T=J ratio tend to zero as N�2

s , i.e.,

towards the origin in Fig. 3(b), where the motion has no
dynamical instabilities.
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