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Modeling of nonlinear random wave fields in nature (and, in particular, their most common example—

wind waves in the ocean) is one of the fundamental open problems of natural sciences. The existing

theoretical approaches based on the kinetic equation paradigm assume a proximity to stationarity and

homogeneity. In reality this assumption is often violated and how a wave field evolves is not known. We

show by direct numerical simulation that after a strong perturbation the wave field evolves on the much

faster Oð"�2Þ ‘‘dynamic’’ [rather then Oð"�4Þ ‘‘kinetic’’] time scale; here " is the characteristic wave

steepness (" � 1). The phenomenon of fast evolution is universal, and it must occur whenever there is a

strong external perturbation.
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Introduction.—Modeling of random nonlinear wave
fields (wave turbulence) is a fundamental problem of great
significance. Wave turbulence occurs at all scales, from
quantum to cosmological, and in many physical contexts,
with applications ranging from oceans and atmospheres to
semiconductor lasers and thermonuclear devices. Wind
waves represent the most well-studied example of wave
turbulence with immediate practical applications. The
quality of wave forecasts based upon wave modeling is
essential for the reliability of shipping, development of
offshore resources and global weather prediction [1]. The
reduction of the wave turbulence problem to an analysis of
the kinetic equation is one of the major achievements of the
20th century physics [2,3]. The fundamentals of the present
understanding of wind-wave evolution are as follows:
(i) Wind waves are weakly nonlinear, and their character-
istic steepness " (a measure of nonlinearity) is small [1,4].
(ii) Dominant waves evolve primarily due to nonlinear
interactions, rather than due to the direct effect of wind
[5]. (iii) Because of the dominant (quartet) nonlinear in-
teractions ‘‘individual’’ wave amplitudes evolve on the
Oð"�2Þ time scale. (iv) Random wind-wave fields are
described by ensemble averaged quantities; then the
Oð"�2Þ dynamics of the individual waves averages out
and the evolution of wave spectra occurs on the Oð"�4Þ
time scale and is described by the kinetic equation. (v) The
kinetic equation prescribes the scaling of energy fluxes as
Oð"6Þ, and the existence of Kolmogorov-Zakharov (KZ)
cascades of energy and wave action that gives rise to the
development of powerlike wave spectra [1,2,4–7]. This
picture, supported experimentally [1,4,7] and by numerical
simulations [8–10], assumes that the wave fields are close
to stationarity, and that there is spatial homogeneity of the
environment. A key open question is what happens when
these assumptions are violated in nature, and the theory
cannot be applied. In particular, although sudden changes
of wind speed or direction often occur in real oceanic
conditions and violate the applicability conditions of the
theory, modeling of such situations is still performed with

the kinetic equation, due to the absence of alternatives
[4,11,12]. There is experimental evidence that the adjust-
ment of the wave fields to sudden change of wind direc-
tion is faster than predicted by the kinetic equation [13,14],
and that a sharp change of wind speed can also cause a
much faster field evolution [15]. In the most detailed and
well-documented laboratory study of effects of a sudden
wind increase [16], it was found that the wave field adjust-
ment occurs on the time scale of only a few dozen wave
periods, which is incompatible with the Oð"�4Þ time scale
estimate.
On the theoretical side it was first noted that the evolu-

tion of an arbitrary initial wave field not in the near-
stationary state can occur on the dynamic Oð"�2Þ time
scale during a short initial stage [17]; the conjecture was
supported by the simulations of the Dysthe equation [18]
and later confirmed by integration of the Zakharov equa-
tion [8]. It was also found that a sharp change of forcing
entails evolution of spectra on the Oð"�2Þ time scale at
least for toy models describing a few interacting wave
packets [19]. Theoretical arguments suggesting that such
a fast evolution is a generic phenomenon, whenever there
is a strong perturbation, were put forward in [19], but
whether this is true for real systems remained an open
question. The most natural way to address it is via direct
numerical simulations (DNS). However, solving the
Navier-Stokes or Euler equations would make little sense
because wave breaking is unavoidable and cannot be re-
solved. For modeling wave nonlinear interactions the inte-
grodifferential Zakharov equation is fundamental, does not
have the breaking problem and has the advantage of uni-
versality. Here, using a specially developed DNS algorithm
for the Zakharov equation [8], we show that fast evolution
does occur for realistic forcing, and conclude that it must
be a commonplace phenomenon in nature. For wind waves
such regimes are commonly caused by, e.g., sudden
changes of wind, currents, internal waves, interaction
with bodies and shores; modeling of all such situations
should be radically revised.
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Theoretical background.—We consider potential gravity
waves on the surface of deep ideal fluid governed by the
Zakharov equation [2,20,21]

i
@b0
@t

¼ ð!0 þ i�0Þb0 þ
Z

T0123b
�
1b2b3�0þ1�2�3dk123:

(1)

Here, bðkÞ is a canonical complex variable in Fourier

space, k is the wave vector, k ¼ jkj, !ðkÞ ¼ ðgkÞ1=2 is
the linear dispersion relation, i�ðkÞ is the small imaginary
correction to frequency due to forcing or dissipation, grav-
ity g is normalized to unity, and integration in (1) is
performed over the entire k-plane. The compact notation
used designates the arguments by indices, e.g., T0123 ¼
Tðk;k1;k2;k3Þ, �0þ1�2�3 ¼ �ðkþ k1 � k2 � k3Þ, as-
terisk means complex conjugation, and t is time. The
canonical variable bðkÞ is linked to the Fourier-
transformed primitive physical variables �ðk; tÞ and
’ðk; tÞ (position of the free surface and the velocity po-
tential at the surface, respectively) through an integral-
power series [21]
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Derivation of (1) assumes that wave slopes are Oð"Þ small,
and includes expansion in powers of ". Details of the
lengthy procedure of derivation of (1), as well as the
expression for the kernel T, can be found in [21].

Statistical description of wave fields is usually sought in
terms of correlators of bðk; tÞ. The classical derivation
(e.g., [2]) uses (1) as the starting point and leads to the
equation
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where n0 is the second-order correlator, hb�0b1i ¼ n0�0�1,

angular brackets mean ensemble averaging, f0123 ¼
n2n3ðn0 þ n1Þ � n0n1ðn2 þ n3Þ, �! ¼ �ð!0 þ!1 �
!2 �!3Þ, and Sf is the forcing or dissipation term. The

kinetic equation (2) describes the evolution of the wave
statistical ensemble. Derivation of (2) assumes that a ran-
dom wave field is close to stationarity, and (2) predicts
slow Oð"�4Þ evolution, regardless of the initial conditions
or forcing changes. Thus, if a wave field is instantly driven
out of the equilibrium by a perturbation, then (2), strictly
speaking, cannot be used. We consider this case by solving
(1) numerically by DNS.

Numerical algorithm.—Direct numerical simulations
are based on an efficient algorithm for the solution of (1),
first developed for discrete wave systems [20], then modi-
fied for the study of continuous random water wave fields
and tested to give good agreement with the kinetic equation
where it is applicable [8]. We build in Fourier space a grid
consisting of a moderate (about 5000) number of wave
packets, coupled through exact and approximate resonant

interactions. The grid is logarithmic in the wave number k
(161 points within a span 0:13< k< 2:12m�1) and regular
in the angle � (31 point within ��=3 � � � �=3). A
quartet of grid points is assumed to be in approximate
resonance if its wave number and frequency mismatch
satisfies a pair of conditions �!=!min < �!, �k=kmin <
�k �!=!min, where �! and �k are the frequency and wave
number mismatch in the quartet, !min and kmin are the
minimum values of frequency and wave number in the
quartet, �! is the mean frequency, and �! and �k are
detuning parameters, chosen to ensure that the total num-
ber of resonances is OðN2Þ, where N is the number of grid
points. In this study, N ¼ 4991, �! ¼ �k ¼ 0:01; results
were verified to be nondependent on specific values in a
wide range of �!, �k. Forcing is calculated using an
empirical formula [22] and confined to the range 1:0< k<
1:29m�1, and strong dissipation is applied to k > 1:62m�1.
The averaging is over 30 realizations.
In modeling the effect of sharp wind change on random

wave fields, we focus on wave nonlinear interactions and
do not aim to reproduce all the complexity of wave gen-
eration and dissipation dominated by breaking. Instead,
preserving the basic physics, we choose a simplified de-
scription: wave breaking is not explicitly included, and the
forcing is wind input minus dissipation. Forcing is applied
to the high-frequency part of the spectrum only, which
means that for dominant waves and waves of comparable
scales, wind input is exactly balanced by dissipation. Then,
the most energetic part of wave field evolves entirely due to
nonlinear interactions, which is typical of developed sea
waves [7,23]. In order to quantify the dependence of wave
evolution on nonlinearity, a wide range of wave steepness
is used.
Results.—In all numerical runs, we start with low-

intensity white noise, and then run the model for several
thousand characteristic wave periods, to allow the spec-
trum to develop under the constant wind. Thus, prior to the
change of forcing, the developed wave spectrum is nearly
stationary, and its evolution is described by large-time
asymptotics of the kinetic equation [5]. In particular, the
wave action spectral density of the dominant waves,NðkpÞ,
where kp is the wave number of the spectral peak, grows

slowly:NðkpÞ � t23=11, the peak position gradually shifts to

low wave numbers as kp � t�6=11 due to the inverse

Kolmogorov-Zakharov cascade of wave action, and the

dominant wave steepness " (defined as " ¼ ffiffiffiffiffiffi
2E

p
kp=2�,

where E ¼ R
!bkb

�
kdk is the wave energy) slowly de-

creases. Several values of wind speed in the range
8–16 m=swere used in different runs. In all runs, evolution
of wave spectra continued until the spectral peak, which
was slowly moving towards large scales, reached the value
kp � 0:45kf, where kf ¼ 1:0 is the lower boundary of

forcing. Then, at time T0 (Table I), the wind was instanta-
neously increased to 16 or 24 m=s, so that the spectrum
started to grow from the quasiequilibrium value N0ðkÞ. An
example of the evolution of wave action spectrum for run 3
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of the numerical model (Table I) is shown in Fig. 1(a), and
the corresponding evolution of wave steepness and spectral
peak in Figs. 1(b) and 1(c) respectively. After the sharp
increase in wind, the steepness rises almost instantly, and
reaches its new ‘‘equilibrium value’’ in a few hundred
wave periods. During this short period the disturbance
‘‘propagates’’ from the forcing region to the spectral
peak on a time scale of dozens of wave periods, so that
energy at all wave numbers on the high-frequency side of
the peak starts to grow almost simultaneously, leading to a
fast increase in the steepness. Meanwhile, the downshift of
the spectral peak stops for a few hundred wave periods, and
then resumes at an increased rate, gradually slowing down
back to the kinetic equation asymptotics [Fig. 1(c)].

Our primary interest is in growth of waves on the
spectral slope, i.e., between the peak and forcing region,
during the adjustment process. The response of several
sample spectral bands to the wind change is illustrated in
Fig. 2(a), shown as function of time in terms of the nor-
malized wave action ðNðkÞ � N0ðkÞÞ=ðNfðkÞ � N0ðkÞÞ,
where NðkÞ is the wave action at time t, and N0ðkÞ and
NfðkÞ are the quasiequilibrium values of the wave action

before and after the wind increase. For all spectral bands
the growth rates have a peak in the first few hundred wave
periods after T0, and then gradually decrease, as the spec-
trum slowly adjusts to the new forcing.

We introduce two characteristic values of the growth
rate: the ‘‘maximal’’ rate MðkÞ [defined as the maximum,
for each k, of dNðkÞ=dt over 1000 wave periods after the
change of wind], and the ‘‘average’’ rate mðkÞ defined as
the mean growth rate during 3=4 of the total change
between N0ðkÞ and NfðkÞ. The dependence of MðkÞ and
mðkÞ on k is shown in Fig. 2(b). There is no net forcing or
dissipation for k < 1, so that all spectral growth illustrated
in Fig. 2 is entirely due to nonlinear interactions.
Dependence of the growth rate on time and wave number
resembles the results of simulations of the kinetic equation
[11]; however, we are primarily interested in its depen-
dence on nonlinearity " (the kinetic equation predicts strict
"6 scaling). Here, nonlinearity can be characterized by two
parameters, namely, the ‘‘equilibrium’’ values of " before
and after the wind change ("1 and "2 respectively, see

Table I). In all runs, dependence of mðkÞ on "1 was
weak, and virtually no dependence of MðkÞ on "1 was
found, but both mðkÞ and MðkÞ strongly depend on "2. To
quantify this dependence, we choose the integrals of mðkÞ
and MðkÞ with respect to k on the spectral slope as char-
acteristic values, denote them as �m and �M, and plot them
for all runs versus "2, on a logarithmic scale (Fig. 3). Both
�m and �M are scaled with "�, where � is close to 4 (least-
squares fits yield 4.3 and 3.5). This scaling is in sharp
contrast with the "6 scaling of the kinetic equation, and
corresponds to the Oð"�2Þ evolution time scale.
Conclusions.—The DNS of wave fields subjected to an

abrupt change of forcing shows that the nonlinear evolution
of random wave fields occurs on the fast (dynamic) time
scale. This is similar to the fast evolution of model spectra
at a short initial stage found earlier by two different meth-

TABLE I. Runs of the numerical model. U1 and U2—wind
speeds before and after the change of forcing at time T0; "1 and
"2—equilibrium values of wave steepness; kp—wave number of

the spectral peak at the change of forcing.

Run U1 (m/s) U2 (m/s) "1 "2 T0 (periods) kp (m�1)

1 8 16 0.099 0.174 15280 0.45

2 8 24 0.099 0.238 15280 0.45

3 10 16 0.118 0.173 6455 0.51

4 10 24 0.119 0.231 6455 0.51

5 12 16 0.139 0.169 5348 0.46

6 12 24 0.138 0.233 5348 0.46

7 16 24 0.170 0.217 4011 0.40 100
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FIG. 1. An example of DNS of random wave field evolution
under an abrupt increase of wind (Run 3). (a) Time evolution of
wave action spectrum, in steps of approximately 400 periods of
the spectral peak (intermediate curves are dashed). Regions of
forcing and dissipation are delimited by dotted vertical lines.
Equilibrium spectra N0ðkÞ and NfðkÞ are shown by shading.

(b) Evolution of wave steepness ". Equilibrium values of steep-
ness before and after the increase of forcing (which occurs at
t ¼ T0) are marked by dashed horizontal lines. (c) Evolution of
spectral peak kp. Theoretical (according to the large-time kinetic

equation asymptotics) downshift rate kp � t�6=11 is shown by the

dashed line.

PRL 102, 024502 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

16 JANUARY 2009

024502-3



ods [8,18], since the initialization of a spectrum by random
initial phases is another example of a strong perturbation.
This implies that wave modeling in common situations of
rapidly changing or gusty winds, or in the presence of
spatial inhomogeneities, should be radically revised.
Since this study is based upon the Zakharov equation, in
which all specific properties of waves are contained merely

in the interaction coefficients [2], this conclusion about the
scaling of wave field evolution is not confined to wind
waves, but applies to all random weakly nonlinear disper-
sive wave fields whenever there is a sharp and strong
external perturbation.
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FIG. 2. Response of the wave action spectrum to the sharp
increase of forcing (run 3). (a) Response of sample spectral
bands (integrated from k0 to 1:1k0). Values of the integrated
spectrum NðkÞ are normalized by the equilibrium values N0ðkÞ
and NfðkÞ. (b) Maximal and average growth rates (MðkÞ and

mðkÞ respectively, defined in the text) as functions of the wave
number.
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FIG. 3. Integrated (from k ¼ 0:5 to k ¼ 1:0) maximal growth
rates �M and mean growth rates �m versus wave steepness "2, on a
logarithmic scale, with least-squares fits (dashed lines) for the
scaling "� (� ¼ 3:5 for �M and � ¼ 4:3 for �m). Theoretical
dynamic "4 and kinetic "6 scalings are also shown (dotted lines).
Numbers identify numerical runs (Table I).
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