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In the absence of nonlinearity all eigenmodes of a chain with disorder are spatially localized (Anderson

localization). The width of the eigenvalue spectrum and the average eigenvalue spacing inside the lo-

calization volume set two frequency scales. An initially localized wave packet spreads in the presence of

nonlinearity. Nonlinearity introduces frequency shifts, which define three different evolution outcomes:

(i) localization as a transient, with subsequent subdiffusion; (ii) the absence of the transient and immediate

subdiffusion; (iii) self-trapping of a part of the packet and subdiffusion of the remainder. The subdiffusive

spreading is due to a finite number of packet modes being resonant. This number does not change on aver-

age and depends only on the disorder strength. Spreading is due to corresponding weak chaos inside the

packet, which slowly heats the cold exterior. The second moment of the packet grows as t�. We find �¼ 1
3 .
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The normal modes (NMs) of a one-dimensional linear
system with uncorrelated random potential are spatially
localized (Anderson localization). Therefore any wave
packet, which is initially localized, remains localized for
all time [1]. When nonlinearities are added, NMs interact
with each other [2]. Recently, experiments were performed
on light propagation in spatially random nonlinear optical
media [3] and on Bose-Einstein condensate expansions in
random optical potentials [4].

Numerical studies of wave packet propagation in several
models showed that the second moment of the norm or
energy distribution grows subdiffusively in time as t� [5,6],
with � � 1=3. Reports on partial localization were pub-
lished as well [7,8]. Further numerical conductivity studies
report Ohmic behavior at finite energy densities [9].

The aim of the present work is to clarify the mechanisms
of wave packet spreading and localization. We study two
models. First, the Hamiltonian of the disordered discrete
nonlinear Schrödinger (DNLS) model:

H D ¼ X

l

�ljc lj2 þ �

2
jc lj4 � ðc lþ1c

?
l þ c:c:Þ (1)

with complex variables c l. The random on-site energies �l
are chosen uniformly from the interval ½�W

2 ;
W
2 �. The

equations of motion are generated by _c l ¼ @H D=@ðic ?
l Þ.

Second, the Hamiltonian of the quartic Klein-Gordon
(KG) chain of coupled anharmonic oscillators with coor-
dinates ul and momenta pl:

H K ¼ X

l

p2
l

2
þ ~�l

2
u2l þ

1

4
u4l þ

1

2W
ðulþ1 � ulÞ2: (2)

The equations of motion are €ul ¼ �@H K=@ul, and ~�l are
chosen uniformly from the interval ½12 ; 32�.

We consider a wave packet at t ¼ 0 which is given by a
single site excitation�l ¼ �l;l0 with �l0 ¼ 0 for the DNLS

model, and xl ¼ X�l;l0 with pl ¼ 0 and ~�l0 ¼ 1 for the KG

chains. The value of X controls the energy E in the latter
case.
We will use the DNLS model for theoretical consider-

ations and present numerical results for both models [10].
For � ¼ 0, Eq. (1) is reduced to the linear eigenvalue
problem �Al ¼ �lAl � ðAlþ1 þ Al�1Þ. The eigenvectors
A�;l are the NMs, and the eigenvalues �� are the frequen-

cies of the NMs.
The width of the spectrum f��g is � ¼ W þ 4. The

asymptotic spatial decay of an eigenvector is given by

A�;l � e�l=�, where �ð��Þ � �ð0Þ � 100=W2 is the local-

ization length [12]. The NM participation number P� ¼
1=
P

lA
4
�;l characterizes the spatial extend (localization vol-

ume) of the NM. It is distributed around the mean value
P� � 3:6� with variance � ð1:3�Þ2 [13]. The average
spacing of eigenvalues of NMs within the range of a

localization volume is therefore �� � �=P�. The two

scales �� <� determine the packet evolution details in
the presence of nonlinearity.
The equations of motion of (1) in normal mode space

read

i _�� ¼ ���� þ �
X

�1;�2;�3

I�;�1;�2;�3��1
��

�2
��3

(3)

with the overlap integral

I�;�1;�2;�3 ¼
X

l

A�;lA�1;lA�2;lA�3;l: (4)

The variables �� determine the complex time-dependent
amplitudes of the NMs.
The nonlinear frequency shift at site l0 is �� � �. Then

we expect three qualitatively different regimes of spread-

ing: (i) �< ��; (ii) �� < �< �; (iii) �<�. In case (i)
the local frequency shift is less than the average spacing
between excited modes. Therefore no initial resonance
overlap of them is expected, and the dynamics may (at
least for long times) evolve as the one for � ¼ 0. In
case (ii) resonance overlap may happen immediately, and
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the packet should evolve differently. For case (iii) the
frequency shift exceeds the spectrum width. Therefore
some renormalized frequencies of NMs (or sites) may be
tuned out of resonance with the NM spectrum, leading to
self-trapping. The above definitions are highly qualitative,
since localized initial conditions are subject to strong
fluctuations. Yet, regime (iii) is also captured by a theorem
presented in [7], which proves that for �>� the single
site excitation cannot uniformly spread over the entire
(infinite) lattice for the DNLS case.

We order the NMs in space by increasing the value of the
center-of-norm coordinate X� ¼ P

llA
2
�;l. We analyze nor-

malized distributions z� � 0 using the second moment
m2 ¼

P
�ð�� ��Þ2z� and the participation number P ¼

1=
P

�z
2
�, which measures the number of the strongest

excited sites in z�. Here �� ¼ P
��z�. For the DNLS

model, we follow norm density distributions z� �
j��j2=P�j��j2. For the KG chain, we follow normalized
energy density distributions z� � h�=

P
�h� with h� ¼

_a2�=2þ!2
�a

2
�=2, where a� is the amplitude of the �th

NM and !2
� ¼ 1þ ð�� þ 2Þ=W.

We systematically studied the evolution of wave packets
for (1) and (2) [14]. The above scenario was observed very
clearly. Examples are shown in Fig. 1. Regime (iii) yields
self-trapping (see also Figs. 1 and 3 of Ref. [7]); therefore
P does not grow significantly, while the second moment
m2 � t� with � � 1=3 [(r), red curves]. Thus a part of the
excitation stays highly localized [7], while another part
delocalizes. Note that for large � 	 � (or similar energy

for the KG model) almost all the excitation is self-trapped.
Regime (ii) yields subdiffusive spreading withm2 � t� and

P� t�=2 [5] [(g), green curves]. Regime (i) shows
Anderson localization up to some time scale 	, which
increases with decreasing �. For t < 	 both m2 and P are
not changing. However, for t > 	 a detrapping takes place,
and the packet starts to grow with characteristics as in (ii)
[(b), blue curves]. Therefore regime (i) is a transient, which
ends at some time 	, and after that regime (ii) takes over.
Partial nonlinear localization in regime (iii) is explained

by self-trapping [7]. It is due to tuning frequencies of
excitations out of resonance with the NM spectrum, takes
place irrespective of the presence of disorder, and is related
to the presence of exact t-periodic spatially localized states
(also coined discrete breathers) for ordered [11] and dis-
ordered systems [15] (in the latter case t-quasiperiodic
states also exist). These exact solutions act as trapping
centers.
Anderson localization on finite times in regime (i) is

observed on potentially large time scales 	, and as in (iii),
regular states act as trapping centers [15]. For t > 	, the
wave packet trajectory finally departs away from the vi-
cinity of regular orbits, and deterministic chaos sets in
inside the localization volume, with subsequent spreading.
The subdiffusive spreading takes place in regime (i) for

t > 	, in regime (ii), and for a part of the wave packet also
in regime (iii). The exponent � does not appear to depend
on �. In Fig. 2 we show results for m2ðtÞ in the respective
regime (ii) for different disorder strengths. Again we find
no visible dependence of the exponent � on W. Therefore
the subdiffusive spreading is rather universal.
Let each NM in the packet after some spreading have

norm j��j2 � n 
 1. The packet size is then 1=n 	 P�,
and the second moment m2 � 1=n2. We can think of two
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FIG. 1 (color online). m2 and P vs time in log-log plots. Left
plots: The DNLS model with W ¼ 4, � ¼ 0:1, 1, 4.5 [(b), blue;
(g), green; (r) red]. Right plots: The KG chain with W ¼ 4 and
initial energy E ¼ 0:05, 0.4, 1.5 [(b), blue; (g), green; (r) red].
The disorder realization is kept unchanged for each of the
models. Dashed straight lines are guides to the eye for exponents
1=3 (m2) and 1=6 (P), respectively.
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FIG. 2 (color online). m2 (in arbitrary units) vs time in log-log
plots in regime (ii) and different disorder strengths. Lower set of
curves: plain integration (without dephasing). Upper set of
curves: integration with dephasing of NMs (see text). Dashed
straight lines with exponents 1=3 (no dephasing) and 1=2 (de-
phasing) are guides to the eye. Left panel: The DNLS model,
W ¼ 4, � ¼ 3 (blue); W ¼ 7, � ¼ 4 (green); W ¼ 10, � ¼ 6
(red). Right panel: The KG chain, W ¼ 10, E ¼ 0:25 (blue),
W ¼ 7, E ¼ 0:3 (red), W ¼ 4, E ¼ 0:4 (green). The curves are
shifted vertically in order to give maximum overlap within each
group.
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possible mechanisms of wave packet spreading: a NMwith
index 
 in a layer of width P� in the cold exterior, which
borders the packet, is either heated by the packet or reso-
nantly excited by some particular NM from a layer with
width P� inside the packet. Heating here implies a (sub)
diffusive spreading of energy. Note that the numerical
results yield subdiffusion, supporting the nonballistic dif-
fusive heating mechanism.

For heating to work, the packet modes should have a
continuous frequency part in their temporal spectrum
(similar to a white noise), at variance to a pure point
spectrum. Therefore at least some NMs of the packet
should evolve chaotically in time. Reference [6] assumed
that all NMs in the packet are chaotic and that their
phases can be assumed to be random. With (3) the heating

of the exterior mode should evolve as i _�
 � �
�
 þ
�n3=2fðtÞ, where hfðtÞfðt0Þi ¼ �ðt� t0Þ ensures that fðtÞ
has a continuous frequency spectrum. Then the exterior
NM is increasing its norm according to j�
j2 � �2n3t.

The momentary diffusion rate of the packet is given by the
inverse time it needs to heat the exterior mode up to the
packet level: D ¼ 1=T � �2n2. The diffusion equation

m2 �Dt yields m2 � �t1=2 [16]. We tested the above
conclusions by enforcing decoherence of NM phases [17]

and obtain m2 � t1=2 (see Fig. 2). Therefore, when the
NMs dephase completely, the exponent ~� ¼ 1=2, contra-
dicting numerical observations without dephasing. Thus,
not all NMs in the packet are chaotic, and dephasing is at
best a partial outcome.

Chaos is a combined result of resonances and nonintegr-
ability. Let us estimate the number of resonant modes in the
packet. A NM with j��j2 ¼ n will excite other modes in
first order in �n as

j�
j ¼ �nR�1
�;
j��j; R�;
 �

��������
�� � �


I
;�;�;�

��������: (5)

The perturbation approach breaks down, and resonances
set in, when R�;
 < �n. We perform a statistical numerical

analysis. For a given NM � we obtain R�;
0
¼

min
��R�;
. Collecting R�;
0
for many � and many dis-

order realizations, we find the probability density distribu-
tion W ðR�;
0

Þ (Fig. 3, left plot). The main result is that

W ðx ! 0Þ ! const � 0. Therefore the probability for a
mode in the packet to be resonant is proportional to�n. On
average the number of resonant modes in the packet is
constant and proportional to �, and their fraction within
the packet is��n. Since packet mode amplitudes fluctuate
in general, averaging is meant both over the packet and
over suitably long time windows (yet short compared to the
momentary inverse packet growth rate). We conclude that
the continuous frequency part of the dynamics of a packet
mode is scaled down by �n, compared to the case when all
NMs would be chaotic. Then the exterior NM is heated

according to i _�
 � �
�
 þ �2n5=2fðtÞ. It follows that

j�
j2 � �4n5t and that the rate D ¼ 1=T � �4n4. The

diffusion equation m2 �Dt yields

m2 � �4=3t�; � ¼ 1=3: (6)

The predicted exponent is close to the numerically ob-
served one.
In order to clarify the nature of resonant mode pairs, we

studied statistical properties of resonant pairs for W ¼ 4
with R�;
0

< xc. Here xc � �n is a cutoff value, which

decreases the more the packet spreads (in our simulations
we reach values xc � 0:01). The corresponding distribu-
tions of the overlap integral jI
0;�;�;�j appear to be invari-

ant, with an average value �I � 0:05. At the same time, the
distributions of the frequency spacing � ¼ j�� � �
0

j fa-
vor smaller values the smaller xc is, with an average
spacing �� ¼ 0:0026 (xc ¼ 0:1) and �� ¼ 0:000 26 (xc ¼
0:01). Both NMs from a resonant pair with small R�;
0

have a multipeak, or hybrid, structure (inset in Fig. 3, right
plot). We evaluated the probability density P ðdÞ of the
peak distance d, estimated with twice the square root of the
second moment of the distribution zl ¼ A2

�;lA
2

0;l

(Fig. 3,

right plot). Its average increases from �d ¼ 24:8 for xc ¼
0:1 to �d ¼ 32:3 for xc ¼ 0:01. With the help of semiclas-
sical tunneling rate estimates [18] the level splitting of such
a hybrid pair can be estimated to be �� A2

�;l0
, where l0

marks the midpoint between the peaks. This leads to a

splitting of the order of �� e�d=�. Therefore, an increase
of the packet size goes along with a much weaker increase
of the distance d, in accord with our above explanation.
Finally we consider the process of resonant excitation of

an exterior mode by a mode from the packet. The number
of packet modes in a layer of the width of the localization
volume at the edge, which are resonant with a cold exterior
mode, will be proportional to �n. After long enough
spreading, �n 
 1. On average there will be no mode
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FIG. 3 (color online). Left plot: Probability densities W ðxÞ of
NMs being resonant (see text for details).W ¼ 4, 7, 10 (from top
to bottom). Right plot: Probability densities P ðdÞ of peak
distances between resonant NM pairs for W ¼ 4; (o) orange,
xc ¼ 0:1; (b) black, xc ¼ 0:01 (see text for details). Inset: The
eigenvectors of a resonant pair of double-peaked states (solid
and dashed lines).
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inside the packet, which could efficiently resonate with
an exterior mode. Therefore, resonant growth can be
excluded.

The subdiffusive spreading is universal; i.e., the expo-
nent � is independent of� andW, which are only affecting
the prefactor in (6). Excluding self-trapping, any nonzero
nonlinearity strength � will completely delocalize the
wave packet and destroy Anderson localization. The ex-
ponent � is determined solely by the degree of nonlinear-
ity, which defines the type of overlap integral to be
considered in (5), and by the stiffness of the spectrum
f��g. We performed fittings by analyzing 20 runs in
regime (ii) with different disorder realizations. For each
realization we fitted the exponent �, and then averaged
over all computational measurements. We find� ¼ 0:33�
0:02 for the DNLS model and � ¼ 0:33� 0:05 for the KG
chain. Therefore, the predicted universal exponent � ¼
1=3 explains all available data.

Using the above approach, we estimate the growth of the
second moment of a wave packet which is excited on top of
a nonzero norm density background n0. Assuming the
wave packet having norm density (nþ n0), we find the
rate D� �4ðnþ n0Þ4 and therefore the second moment of
the wave packet m2 � 1=n2 � �4ðnþ n0Þ4t. It follows
that, as long as n 	 n0 holds, the wave packet spreads

subdiffusively m2 � �4=3t1=3. But once the wave packet
decays such that n� n0, normal diffusionm2 � �4n40t sets
in, in accordance with [9]. The crossover time scales to
infinity as n0 is approaching zero.

Let us generalize our results to d-dimensional lattices
with nonlinearity order �> 0:

i _c l ¼ �lc l þ �jc lj�c l �
X

m2DðlÞ
cm: (7)

Here l denotes a d-dimensional lattice vector with integer
components, andm 2 DðlÞ defines its set of nearest neigh-
bor lattice sites. We assume that (a) all NMs are spatially
localized (which can be obtained for strong enough disor-
der W), and (b) the property W ðx ! 0Þ ! const � 0
holds. A wave packet with average norm n per excited

mode has a second moment m2 � 1=n2=d. It follows that
[19]

m2 � ð�4tÞ�; � ¼ 2

2þ dð�þ 2Þ : (8)

The exponent � is bounded from above by �max ¼ 1=2,
which is obtained for d ¼ 1 and � ! 0. For the above
studied two-body interaction � ¼ 2, we predict �ðd ¼
2Þ ¼ 1=5 and �ðd ¼ 3Þ ¼ 1=7.

It is a challenging task to determine the bounds of the
domains of validity of (8). They will be reached when
W ðx ! 0Þ ! 0. Is further growth prohibited then? We
think not, because trapping an excitation in a finite volume
must generically lead to equipartition on finite times due to
nonintegrability. That induces a finite (however weak)
chaotic component in the dynamics, which will heat the
cold exterior. Extending the above resonance scenario,

higher order resonances are expected to persist and to yield
further (though slower) spreading.
We thank S. Komineas for very intensive help, and B. L.
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