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We have studied B0
s ! D�

s �
þ and B0

s ! D�
s K

� decays using 23:6 fb�1 of data collected at the �ð5SÞ
resonance with the Belle detector at the KEKB eþe� collider. This highly pure B0

s ! D�
s �

þ sample is

used to measure the branching fraction,BðB0
s ! D�

s �
þÞ ¼ ½3:67þ0:35

�0:33ðstatÞþ0:43
�0:42ðsystÞ � 0:49ðfsÞ� � 10�3

(fs ¼ N
Bð�Þ
s

�Bð�Þ
s
=Nb �b) and the fractions of B

0
s event types at the�ð5SÞ energy, in particular NB�

s
�B�
s
=N

Bð�Þ
s

�Bð�Þ
s
¼

ð90:1þ3:8
�4:0 � 0:2Þ%. We also determine the masses MðB0

s Þ ¼ ð5364:4� 1:3� 0:7Þ MeV=c2 and MðB�
s Þ ¼

ð5416:4� 0:4� 0:5Þ MeV=c2. In addition, we observe B0
s ! D�

s K
� decays with a significance of 3:5�

and measure BðB0
s ! D�

s K
�Þ ¼ ½2:4þ1:2�1:0ðstatÞ � 0:3ðsystÞ � 0:3ðfsÞ� � 10�4.

DOI: 10.1103/PhysRevLett.102.021801 PACS numbers: 13.25.Hw, 13.25.Gv, 14.40.Gx, 14.40.Nd

The decay B0
s ! D�

s �
þ [1] has a relatively large

branching fraction and is a primary normalization mode
at hadron colliders, where the absolute production rate of
B0
s mesons is difficult to measure directly. It proceeds

dominantly via a Cabibbo-favored tree process. The decay
B0 ! D��þ proceeds through the same tree process but
may also have additional contributions from W exchange,
so a comparison of the partial widths of the two decays can
give insight into the poorly known W-exchange process.
The Cabibbo-suppressed mode B0

s ! D�
s K

� is mediated
by b ! c and b ! u tree transitions of similar order
(� �3, in the Wolfenstein parametrization [2]), which
raises the possibility of measuring time-dependent
CP-violating effects [3]. It has recently become possible
to produce B0

s events from eþe� collisions at the �ð5SÞ
resonance in sufficiently large numbers to achieve interest-
ing and competitive measurements. �ð5SÞ events may also
be used to determine precisely the masses of B�

s and B
0
s ; the

mass difference can be compared with that of B�0 and B0 to
test heavy-quark symmetry [4], which predicts equality
between them. Properties of the �ð5SÞ such as the fraction
of events containing a B0

s and the relative proportions of
B0
s
�B0
s , B

�
s
�B0
s , and B�

s
�B�
s provide additional tests of heavy-

quark theories [5,6].
In this Letter, we report measurements performed with

fully reconstructed B0
s ! D�

s �
þ and B0

s ! D�
s K

� decays
in Lint ¼ ð23:6� 0:3Þ fb�1 of data collected with the Belle
detector at the KEKB asymmetric-energy (3.6 GeV on
8.2 GeV) eþe� collider [7] operated at the �ð5SÞ reso-
nance. The beam energy in the center-of-mass (c.m.) frame

is measured to be E�
b ¼ ffiffiffi

s
p

=2 ¼ 5433:5� 0:5 MeV with

�ð5SÞ ! �ð1SÞ�þ��, �ð1SÞ ! �þ�� decays [8]. The
total b �b cross section at the �ð5SÞ energy has been mea-

sured to be ��ð5SÞ
b �b

¼ ð0:302� 0:014Þ nb [9], which in-

cludes B0, Bþ, and B0
s events. Three B0

s production
modes are kinematically allowed: B0

s
�B0
s , B

�
s
�B0
s , and B�

s
�B�
s .

The B�
s decays electromagnetically to B0

s , emitting a pho-
ton with energy E� � 53 MeV. The fraction of b �b events

containing a Bð�Þ
s �Bð�Þ

s pair has been measured to be fs ¼
N

Bð�Þ
s

�Bð�Þ
s
=Nb �b ¼ ð19:5þ3:0

�2:3Þ% [9]. The number of B0
s mesons

in the sample is thus NB0
s
¼ 2� Lint � ��ð5SÞ

b �b
� fs ¼

ð2:78þ0:45
�0:36Þ � 106. The B0

s production mode ratios are de-

fined as fB�
s
�B�
s
¼ NB�

s
�B�
s
=N

Bð�Þ
s

�Bð�Þ
s
, fB�

s
�B0
s
¼ NB�

s
�B0
s
=N

Bð�Þ
s

�Bð�Þ
s
,

and fB0
s
�B0
s
¼ NB0

s
�B0
s
=N

Bð�Þ
s

�Bð�Þ
s
. The Belle Collaboration pre-

viously measured fB�
s
�B�
s
¼ ð93þ7�9Þ% [10].

The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector, a central
drift chamber (CDC), an array of aerogel threshold
Cherenkov counters (ACC), a barrel-like arrangement of
time-of-flight (TOF) scintillation counters, and an electro-
magnetic calorimeter composed of CsI(Tl) crystals located
inside a superconducting solenoid coil that provides a 1.5 T
magnetic field. An iron flux return located outside of the
coil is instrumented to detect K0

L and to identify muons.
The detector is described in detail elsewhere [11].
Reconstructed charged tracks are required to have a

maximum impact parameter with respect to the nominal
interaction point of 0.5 cm in the radial direction and 3 cm
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in the beam-axis direction. A likelihood ratio RK=� ¼
LK=ðL� þLKÞ is built using ACC, TOF, and CDC
(dE=dx) measurements. A track is identified as a pion if
RK=� < 0:6 or as a kaon otherwise. With this selection, the

identification efficiency for pions (kaons) is about 91%
(85%), while the fake rate is about 9% (14%).

Neutral kaons are reconstructed via the decay K0
S !

�þ�� with no identification requirements for the two
charged pions. The K0

S candidates are required to have an

invariant mass within�7:5 MeV=c2 (�4�) of the nominal
K0

S mass (all nominal mass values are taken from

Ref. [12]). Requirements on the K0
S vertex displacement

from the interaction point and on the difference between
vertex and K0

S flight directions are applied. The criteria are

described in detail elsewhere [13]. The K�0 (�) candidates
are reconstructed via the decay K�0 ! Kþ�� (� !
KþK�) with an invariant mass within �50 MeV=c2

(�12 MeV=c2) of the nominal mass.
Candidates for D�

s are reconstructed in the three modes
D�

s ! ���, D�
s ! K�0K�, and D�

s ! K0
SK

� and re-

quired to have mass within �15 MeV=c2 (�3�) of the
nominal D�

s mass for B0
s ! D�

s �
þ and within

�8 MeV=c2 for B0
s ! D�

s K
�. Following Ref. [10], the

signals for B0
s ! D�

s �
þ and B0

s ! D�
s K

� are observed
using two variables: the beam-constrained mass of the B0

s

candidate Mbc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
b � ~p�2

B0
s

q
and the energy difference

�E ¼ E�
B0
s
� E�

b, where (E�
B0
s
, ~p�

B0
s
) is the four-momentum

of the B0
s candidate expressed in the c.m. frame. We select

candidates with Mbc > 5:3 GeV=c2 and �0:3<�E<
0:4 GeV. In each event the B0

s candidate with the D�
s

mass closest to its nominal value is selected for further

analysis; only �1% of events have more than one
candidate.
Further selection criteria are developed using

Monte Carlo (MC) samples based on EVTGEN [14] and
GEANT [15] detector simulation. The most significant

source of background is continuum events, eþe� !
u �u; d �d; s�s; c �c. In addition, for the B0

s ! D�
s K

� mode there
is also a large background from B0

s ! D�
s �

þ, where the
�þ is misidentified as a Kþ. The expected continuum
background, Nbkg, is estimated using MC-generated

continuum events representing three times the data. The
expected signal, Nsig, is obtained assuming BðB0

s !
D�

s �
þÞ ¼ 3:0� 10�3 and fB�

s
�B�
s
¼ 93% for the B0

s !
D�

s �
þ analysis and BðB0

s ! D�
s K

�Þ ¼ 3:7� 10�4 for
the B0

s ! D�
s K

� analysis. For B0
s ! D�

s K
�, we assume

the values of BðB0
s ! D�

s �
þÞ and fB�

s
�B�
s
obtained in the

B0
s ! D�

s �
þ analysis.

To improve signal relative to background, criteria are

chosen to maximize Nsig=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsig þ Nbkg

p
, evaluated in the

B�
s
�B�
s signal region (Fig. 1). Two topological variables are

used. First, we use the ratio of the second and zeroth Fox-
Wolfram moments [16], R2, which has a broad distribution
between zero and one for jetlike continuum events and is
concentrated in the range below 0.5 for the more spherical
signal events. Candidates for B0

s ! D�
s �

þ (B0
s ! D�

s K
�)

are required to have R2 < 0:5 (<0:4). We then use the
helicity angle �hel of the D�

s ! ��� (D�
s ! K�0K�)

decays, defined as the angle between the momentum of
the positive daughter of the � (K�0) and the momentum
of the D�

s in the � (K�0) rest frame; for signal decays
consisting in a spin-0 particle decaying into a spin-1 par-
ticle and a spin-0 particle, the distribution is /cos2�hel,
while for combinatorial background under Ds signal
it is flat. Candidates for D�

s ! ��� and D�
s ! K�0K�

are required to satisfy j cos�helj> 0:2 (>0:35) for the

)
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FIG. 1. ðMbc;�EÞ scatter plots for B0
s ! D�

s �
þ (top) and

B0
s ! D�

s K
� (bottom) candidates. The three boxes in the top

plot are the �2:5� signal regions (B�
s
�B�
s , B

�
s
�B0
s , and B0

s
�B0
s , from

top to bottom) while those in the bottom plot are the �2:5�
B�
s
�B�
s regions for signal (solid) and for B0

s ! D�
s �

þ background
(dashed).

TABLE I. Parametrization of Mbc and �E mean values.

Signal Mean of (Mbc;�E)

B�
s
�B�
s (mB�

s
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
b � ðm2

B�
s
�m2

B0
s
Þ

q
� E�

b)

B�
s
�B0
s (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

B�
s
þm2

B0
s
Þ=2� ½ðm2

B�
s
�m2

B0
s
Þ=4E�

b�2
q

, �
m2

B�s
�m2

B0s

4E�
b

)

B0
s
�B0
s (mB0

s
, 0)

TABLE II. Signal efficiencies, yields (N), and significances (S).

�ð5SÞ mode
P

k"kBk N S

B0
s ! D�

s �
þ mode 161� 15

B�
s
�B�
s 1.58% 145þ14�13 21:0�

B�
s
�B0
s 1.58% 11:8þ5:8

�5:0 2:7�

B0
s
�B0
s 1.56% 4:0þ4:6

�3:7 1:1�

B0
s ! D�

s K
� mode

B�
s
�B�
s 1.12% 6:7þ3:4

�2:7 3:5�
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B0
s ! D�

s �
þ (B0

s ! D�
s K

�) mode. These two selections
reject 43% (73%) of the continuum while retaining 95%
(85%) of the B0

s ! D�
s �

þ (B0
s ! D�

s K
�) signal. MC

studies show that background from Bþ and B0 decays is
small and flat enough to be described together with the
continuum events for the B0

s ! D�
s �

þ mode and is negli-
gible for the B0

s ! D�
s K

� mode. The most relevant back-
ground from B0

s decays is B
0
s ! D��

s �þ.
For each mode, a two-dimensional unbinned extended

maximum likelihood fit [17] in Mbc and �E is performed
on the selected candidates, which are shown in Fig. 1. Each
signal probability density function (PDF) is described by a
sum of two Gaussians. For the B0

s ! D�
s �

þ analysis, all
three B0

s production modes (B�
s
�B�
s , B

�
s
�B0
s , and B0

s
�B0
s) are

fitted simultaneously. For the B0
s ! D�

s K
� mode, only the

B�
s
�B�
s component is taken into account. The resolutions for

Mbc and �E are estimated from MC simulation and scaled
by a common factor (one for each variable) left free in the
B0
s ! D�

s �
þ fit. Approximating p�

B�
s
with p�

B0
s
in the B�

s !
B0
s� decay, the mean values are parametrized, as shown in

Table I, as functions of the B0
s and B�

s masses, which are
also left free in the B0

s ! D�
s �

þ fit. The continuum (to-
gether with possible Bþ and B0 background) is modeled
with an ARGUS function [18] forMbc and a linear function

for �E. A nonparametric two-dimensional PDF, obtained
from MC simulation with the kernel-estimation method
[19], is used to describe the shape of the B0

s ! D��
s �þ

background.
For the B0

s ! D�
s �

þ mode, the three signal yields
are expressed as a function of three free parameters,
BðB0

s ! D�
s �

þÞ, fB�
s
�B�
s
, and fB�

s
�B0
s
, with the relations
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FIG. 2 (color online). (a) Mbc distribution of the B0
s ! D�

s �
þ candidates with �E in the B�

s
�B�
s signal region ½�80;�17� MeV.

(b) �E distribution of the B0
s ! D�

s �
þ candidates with Mbc in the B�

s
�B�
s signal region ½5:41; 5:43� GeV=c2. The different fitted

components are shown with dashed curves for the signal, dotted curves for the B0
s ! D��

s �þ background, and dash-dotted curves for
the continuum. (c),(d) show the same distributions but using the B�

s
�B0
s signal region (�E 2 ½�57; 9� MeV and Mbc 2

½5:38; 5:40� GeV=c2).

TABLE III. Relative systematic uncertainties (in %) for
BðB0

s ! D�
s �

þÞ and BðB0
s ! D�

s K
�Þ.

Source B0
s ! D�

s �
þ B0

s ! D�
s K

�

Integrated luminosity þ1:3 �1:3 þ1:4 �1:2

��ð5SÞ
b �b

þ4:8 �4:4 þ5:0 �4:4
fs þ13:3 �13:3 þ13:6 �13:4
fB�

s
�B�
s

	 	 	 þ4:8 �4:1
D�

s branching fractions þ6:6 �6:1 þ6:8 �5:9
Efficiencies (MC stat.) þ1:2 �1:2 þ1:5 �1:3
Efficiencies (R2; cos�hel) þ4:8 �4:8 þ4:8 �4:8
��, K� identification þ5:4 �5:4 þ5:2 �5:2
Track reconstruction þ4:0 �4:0 þ4:0 �4:0
PDF shapes þ1:0 �1:0 þ3:3 �2:7

Total þ17:8 �17:5 þ19:0 �18:1
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NM ¼ NB0
s
BðB0

s ! D�
s �

þÞfMPk"
M
k Bk, where M is one

of the three Bð�Þ
s �Bð�Þ

s -pair production modes and k runs over
the D�

s modes; the third fraction is defined as fB0
s
�B0
s
¼ 1�

fB�
s
�B�
s
� fB�

s
�B0
s
. The values of

P
k"

M
k Bk, which are the total

D�
s branching fractions [12] weighted by the reconstruc-

tion efficiencies, are listed in Table II.
Figure 2 shows the Mbc and �E projections in the B�

s
�B�
s

and in the B�
s
�B0
s regions of the data, together with the fitted

function. In the Mbc distribution, the three signal compo-
nents are present due to overlap of the signal boxes; the
peak on the right (middle, left) is due to B�

s
�B�
s (B

�
s
�B0
s , B

0
s
�B0
s)

production. Table II presents the fitted signal yields as well

as the significance defined by S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðLmax=L0Þ

p
, where

Lmax (L0) is the value at the maximum (with the corre-
sponding yield set to zero) of the likelihood function con-
volved with a Gaussian distribution that represents the
systematic errors.

Systematic uncertainties on the branching fractions are
shown in Table III. Those on fB�

s
�B�
s
and fB�

s
�B0
s
are mainly

due to PDF uncertainties. Those due to the beam energy,
the momentum calibration, and the p�

B�
s
� p�

B0
s
approxima-

tion are propagated as systematics on the B�
s mass and B0

s

mass. The momentum normalization uncertainties are
much more important in the latter case because the mea-
sured energy of the B0

s candidate is used instead of the
beam energy.
We measure the branching fraction BðB0

s ! D�
s �

þÞ ¼
½3:67þ0:35

�0:33ðstatÞþ0:43
�0:42ðsystÞ � 0:49ðfsÞ� � 10�3, where the

largest systematic uncertainty, due to fs, is quoted sepa-
rately, the fraction fB�

s
�B�
s
¼ ð90:1þ3:8

�4:0 � 0:2Þ% and the two

fitted masses mB0
s
¼ ð5364:4� 1:3� 0:7Þ MeV=c2 and

mB�
s
¼ ð5416:4� 0:4� 0:5Þ MeV=c2. These four mea-

surements supersede the previous Belle values [10]. We
obtain for the first time values for the two fractions fB�

s
�B0
s
¼

ð7:3þ3:3
�3:0 � 0:1Þ% and fB0

s
�B0
s
¼ ð2:6þ2:6

�2:5Þ%, using the corre-

lation (� 0:77) between fB�
s
�B�
s
and fB�

s
�B0
s
.

Our branching fraction is compatible with the CDF
result [12,20], and is slightly higher (1:3�) than BðB0 !
D��þÞ [12]. The value of fB�

s
�B�
s
is significantly larger

than the theoretical expectation of �70% [5,6]. The B0
s

mass is compatible with the world average value [12],
while our value for the B�

s mass is 2:6� larger than the
result from CLEO [21]. The mass difference obtained,
mB�

s
�mB0

s
¼ 52:0� 1:5 MeV=c2, is 4:0� larger than

the world average of mB�0 �mB0 [12], while heavy-quark
symmetry predicts equal values [4].
The distribution of the angle between the B0

s

momentum and the beam axis in the c.m. frame is of
theoretical interest [5] and is presented in Fig. 3 for the
signal events in the B�

s
�B�
s region, using the sPlot method

[22]. A fit to a 1þ acos2��
B0
s

distribution returns

�2=ðnumber of degrees of freedomÞ ¼ 8:74=8 and a ¼
�0:59þ0:18

�0:16. It has been checked that the signal efficiency

does not depend on this angle. We naively expect a ¼
�0:27 by summing over all the possible polarization states.
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FIG. 3. Fitted distribution of the cosine of the angle between
the B0

s momentum and the beam axis in the c.m. frame for the
�ð5SÞ ! B�

s
�B�
s signal.
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FIG. 4 (color online). Left:Mbc distribution of B
0
s ! D�

s K
� candidates with �E in the B�

s
�B�
s signal region. Right: �E distribution of

the B0
s ! D�

s K
� candidates with Mbc in the B�

s
�B�
s signal region; the left (right) peak is the B0

s ! D�
s K

� (B0
s ! D�

s �
þ) component.

The dashed curves, dotted curves, and dash-dotted curves represent the signal, B0
s ! Dð�Þ�

s �þ backgrounds, and continuum,
respectively.
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For the B0
s ! D�

s K
� mode, mean values and resolutions

for B0
s ! D�

s K
� and B0

s ! D�
s �

þ components are cali-
brated using the results of the B0

s ! D�
s �

þ fit. The four
yields (signal, continuum, B0

s ! D�
s �

þ, and B0
s !

D��
s �þ) are allowed to float, but, due to the very small

contribution of B0
s ! D��

s �þ, the ratio between the yields
of B0

s ! D��
s �þ and B0

s ! D�
s �

þ is fixed from a fit to
data without kaon identification.

The fit results are shown in Fig. 4 and Table II.
Systematic errors are presented in Table III. We find
6:7þ3:4

�2:7 signal events (3:5�), corresponding to BðB0
s !

D�
s K

�Þ¼½2:4þ1:2
�1:0ðstatÞ�0:3ðsystÞ�0:3ðfsÞ��10�4, us-

ing the previously fitted value of fB�
s
�B�
s
. In the ratioBðB0

s !
D�

s K
�Þ=BðB0

s ! D�
s �

þÞ ¼ ð6:5þ3:5
�2:9Þ%, the errors are

dominated by the low B0
s ! D�

s K
� statistics.

In summary, a large B0
s ! D�

s �
þ signal is observed

and six physics parameters are measured: the branching
fraction BðB0

s !D�
s �

þÞ¼½3:67þ0:35
�0:33ðstatÞþ0:43

�0:42ðsystÞ �
0:49ðfsÞ��10�3, the fractions of the B0

s pair production
modes at the �ð5SÞ energy, fB�

s
�B�
s
¼ ð90:1þ3:8

�4:0 � 0:2Þ%,

fB�
s
�B0
s
¼ ð7:3þ3:3

�3:0 � 0:1Þ%, fB0
s
�B0
s
¼ ð2:6þ2:6

�2:5Þ%, and the

masses mB�
s
¼ ð5416:4� 0:4� 0:5Þ MeV=c2, mB0

s
¼

ð5364:4� 1:3� 0:7Þ MeV=c2. In addition, evidence
(3:5�) for the B0

s ! D�
s K

� decay is obtained, leading to
a measurement BðB0

s ! D�
s K

�Þ ¼ ½2:4þ1:2
�1:0ðstatÞ �

0:3ðsystÞ � 0:3ðfsÞ� � 10�4.
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