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The cosmological constant � affects cosmological gravitational lensing. Effects due to � can be

studied in the framework of the Schwarzschild–de Sitter spacetime. Two novel contributions, which

cannot be accounted for by a proper use of angular diameter distances, are derived. First, a term ��̂� ¼
2mb�=3 has to be added to the bending angle, where m is the lens mass and b the impact parameter.

Second, � brings about a difference in the redshifts of multiple images. Both effects are quite small for

real astrophysical systems, ��̂� & 1�arcsec and �zs & 10�7.
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The cosmological constant � plays a central role in
gravitational physics and observational cosmology, with
a fine-tuned �� 10�52m�2 favored by large scale struc-
ture observations as a possible choice for dark energy [1].
� should take part in all kinds of gravitational phenomena,
and investigations have been performed on planetary sys-
tems [2,3], gravitational equilibrium of structures and discs
orbiting rotating black holes [4]. Actual upper bounds from
stellar tests give � & 10�42m�2 [3].

The role of � in gravitational lensing is still debated.
The cosmological lens equation is usually derived combin-
ing ‘‘local’’ results on light deflection in the very neighbor-
hood of the lens, derived using asymptotically flat metrics,
with considerations on light propagation in the nearly
homogeneous regions among source, deflector and ob-
server [5]. Effects related to the background spacetime
are based on the Friedmann-Robertson-Walker (FRW)
spacetime in which the lens is embedded and can be seen
as ‘‘global.’’ � and other cosmological fluids affect the
measurement of angles at the observer [6–8]. Such an
effect is related to the background metric and can be
embodied by the angular diameter distances [9–11]. It is
still an open question if there are further local effects of �.
The fact that the differential equation for a light path in the
Schwarzschild–de Sitter (SdS) spacetime, i.e., the spheri-
cally symmetric Schwarzschild vacuum solution with a
cosmological constant, can be written in a form that does
not involve � [2], differently from other dark energy
models [12], suggests that any local effect should be small.
I will show how a new deflection term, due to local
coupling between � and the lens, shows up so that the
corrected cosmological lens equation, relating the position
angle of the images, #, and the angle � at which the source
would be seen in absence of the lens, should be written as
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where #E is the angular Einstein ring, m is the lens mass,
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p Þ is the outer horizon in the de Sitter metric,
and Dd, Dds, and Ds are the angular diameter distances
between the observer and the lens, the deflector and the

source, and the observer and the source, respectively. We
take G ¼ c ¼ 1 throughout. Cosmological distances make
up for global effects whereas the bending angle �̂ describes
local interactions. The contribution of � to the local de-
flection, ��̂�, is then a new local effect.
Together with a correction to the bending, � brings

about also a small difference in the redshift of the images
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where zd and zs are the redshift of the lens and of the source
in absence of �, respectively. #þ and #� are the position

angles of the two images (#2þ � #2� ’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4#2

E

q
).

The above results can be properly derived in the frame-
work of the SdS metric [13],

ds2 ¼ f�ðrÞdt2 � f�ðrÞ�1dr2 � r2ðd�2 � sin2�d�2Þ;
(3)

where f�ðrÞ � 1� 2m=r��r2=3 andm is the black hole
mass. The SdS metric, where the cosmic expansion is
driven only by �. The strong advantage of working with
the SdS coordinates is that lightlike geodesics are very well
known. We can then work in a well defined framework
which already accounts for cosmic expansion and curva-
ture and avoids the problem of matching local and global
effects.
Because of spherical symmetry, photon trajectories can

be restricted to the equatorial plane, � ¼ �=2. Let us
consider an observer in fro;�o ¼ 0g and a light source in
frs; �sg. The orbital equation of a light ray can then be
written in terms of the first integral of motion b as

�s ¼ �
Z dr

r2

�
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b2
þ 1

r2�
� 1

r2
þ 2m

r3

��1=2
; (4)

where the sign of the integral changes at the inversion
points in the r-motion. We consider the weak deflection
limit, where the source and the observer lie in remote
regions very far from the lens and photons pass by the
lens center at a minimum distance which is much larger
than the gravitational radius, i.e., m=b � �m � 1. In a
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cosmological scenario, ro � rs & r�. Furthermore, for a
typical lensing system, b=ro � b=rs � �m [14]. Quantities
of interest can then be expanded according to the parame-
ters �m and �� � b=r�. The expansion technique is similar
to [9] with the main difference that [9] considered a local
system well inside the outer horizon (ro, rs � r�) and
decoupled from the global expansion. For the sake of
brevity, results are grouped up to a given formal order in
�, collecting terms coming from any combination of the
two expansion parameters [9,15]. Even if in our calcula-
tions different terms are kept apart, for a typical galaxy
cluster lens with mass �1014M� and b� 0:1 Mpc,
�mð�5� 10�5Þ and ��ð�2� 10�5Þ are actually of the
same magnitude. The integral in Eq. (4) can then be solved
approximately [9,14,15]. For b > 0, we get for the azimu-
thal deflection
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The angle �̂0 ¼ 4m=b is the well-knownmain contribution
to the bending whereas terms / ðm=bÞi represent higher-
order corrections to the Schwarzschild lens. Geometrical
terms are combinations of the ðb=riÞi-factors and are re-
lated to image (# � b=ro) and source positions; the
ðb=r�Þi-factors account for the outer horizon in the asso-
ciated FRW spacetime. Finally, the term ��̂� � 2bm=r2�
describes the local coupling between the lens and�. As for
�̂0, neither the source nor the observer position enter in
��̂�. The product �mb is the lowest dimensionless com-
bination built with the quantities describing the local in-
teraction of the photon with the lens, i.e., b and m, and the
cosmological constant. In what follows, we will make the
case that such a local coupling should be considered in the
lens equation.

In a cosmological scenario, observer, lens, and source
are receding. Measurements are actually performed in the
locally flat frame of reference of the moving observer. The
apparent angular position of the image, i.e., the angle #
between the tangent to the photon trajectory at the observer
and the radial direction to the lens can be expressed in
terms of the tetrad components of the four momentum P of

the photon at the observer, cos# ¼ P½r�=P½t� [9,15].
Neglecting deviations from the Hubble flow, the motion
has to be radial (vr ¼ dr=dt � 0, d�=dt ¼ 0). In the SdS
metric

sin# ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v½r�2ðroÞ

q
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðb=roÞ2f�ðroÞ

p b
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ðroÞ

q
; (6)

with v½r� ¼ ð�grr=gttÞ1=2vr. The radial motion of a co-
moving observer in SdS coordinates can be derived by
standard transformations from the McVittie form [16],
where an observer in the Hubble flow has constant spatial

coordinates. We get

v½r�ðroÞ ¼ ðro=r�Þð1� 2m=roÞ�1=2: (7)

Distances and source position are defined in the associated
spacetime without the lens [17]. By tuning the lens mass to
zero, we get the de Sitter metric, one of the few cases in
which the RW metric can be put in a static form [18]. We
will consider the spatially flat RW model and the corre-
sponding coordinate transformations. Distances can be
easily computed in the associated RW spacetime, and
then expressed in SdS coordinates. Since the azimuthal
coordinate of the source is not known a priori, we have to
assume the source to be aligned with the line of sight from
the observer to the lens. The angular diameter distance
between a comoving source at z2 and a comoving observer
at z1 is D12 ¼ r�ðz2 � z1Þ=ð1þ z2Þ. Dd, Dds, and Ds can
then be written in terms of radial coordinates plugging in
the corresponding redshifts in the associated spacetime,
zd ¼ ro=r� and zs ¼ ðro þ rsÞ=ðr� � rsÞ. The angle � is
also defined in the associated spacetime. In analogy with
Eq. (6), � is written in terms of a fictitious constant of
motion which solves the geodesic motion in Eq. (4) for the
actual source and observer coordinates but for m ¼ 0 [9].
The lens equation is then obtained by writing �s as a
function of either # or � and equating the two expressions.
As far as angles are concerned, a natural expansion

parameter can be based on the Einstein radius, " �
#E=ð4DÞ, with #E � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mD=Dd

p
and D � Dds=Ds

[14,15]. Once we expand the lens equation as a series in
", the solutions take the form # ’ #Ef�0 þ �1"þ �2"

2g
[9,14,15]. Up to including terms of order of Oð"2Þ, �
enters only through the cosmological distances and the
image positions # solve the standard lens equation,

� ’ # �D�̂; �̂ ’ 4m

b0
þ 15�

4

m2

b20
; (8)

where the bending angle is the Schwarzschild one up to
Oð"2Þ and b0ð� Dd#Þ is the approximated impact
parameter.
Gravitational coupling effects between the central mass

and � show up at the next order, giving rise to additional
contributions to the deflection that cannot be accounted for
by using angular diameter distances. In order to illustrate
the effect of � while still keeping expressions simple, let
us consider a source aligned to the line of sight (� ¼ 0). In
this symmetric configuration, a critical tangential circle
shows up in the observer’s sky instead of two images,
with an angular radius of

#t ¼ #E
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� 675�2
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1� 1

D
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1

r2�"

þ 1

r�"

�
"2
�
; (9)

where r�" � r�=ð4DDdÞ. At this order, � affects the
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image position. The term �#�
t ¼ #E"

2=ð4r2�"Þ ¼ ð1=4Þ�
ðDd=r�Þ2#3

E comes directly from the azimuthal deflection.
Since measured image positions depend on the observer

motion, one might as well consider an observer comoving

in the associated RW spacetime, v½r� ¼ ro=r�, or even
other radial peculiar motions. The critical circle corre-

sponding to a generic radial velocity v½r� ’ ðro=r�Þð1þ
�vð2Þ"2Þ forms at

#t ’#tð�¼ 0Þþ
�
1

4

�
1� 1

2D

�
1

r2�"

þ 1

4r�"ð1�2Dr�"Þ
�
1þ1�4Dr�"

2D
�vð2Þ

��
"2; (10)

which reduces to Eq. (9) for a Mc Vittie comoving ob-

server, �vð2Þ ¼ 4D� 1=r�". For a particular choice of

�vð2Þ, the peculiar velocity can cancel the effect of �.
Whereas some contributions to the radius depend on the
choice of the radial motion, �#�

t does not.
The choice of the angular diameter distance might hide

some other effects. What an observer really measures is the
redshift of the source zs, which is then plugged in the FRW
expression for the distance. The very general formula for

the redshift is 1þ zs ¼ g��k
�
s U

�
s =g��k

�
oU

�
o , with k�o and

k�s the wave vectors of the light ray at the observer and at
the source, respectively, and U�

o and U�
s the four velocities

of the observer and of the source, respectively. Assuming
McVittie comoving players, we get

zObss ¼ f�ðroÞ
f�ðrsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m
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1� b2

r2o
f�ðroÞ

q � 1: (11)

The dependence on the impact factor, which would dis-
appear in absence of �, makes the redshifts of the two
images different. The difference can be written by express-
ing b as a function of # and then expanding. In terms of
redshifts of the associated spacetime, �zObss takes the form
of Eq. (2). Such redshift effect depends on the light ray
directions at the source and at the observer and is not linked
to the total travel time delay. For �� #E, the redshift
difference is proportional to the square of the Einstein
radius ( / m). The effect is really small. For �� #E, ro �
rs � r�=2 and a galaxy cluster lens with mass �1015M�,
�zs � 10�7.

Up to now, we have written distances in terms of red-
shifts of the associated spacetime. You might ask if mea-
sured redshifts could play a role. The light source and the
observer are both massless in our model. Because of gravi-
tational redshift, the measured redshift of the deflector will
also differ from the associated zd. However, all the emitting
regions of the lens along the line of sight contribute to the
measured spectra, and we do not know the effective radial
coordinate we should use for the redshift. It is then safe to
still consider the associated value. The angular diameter
distances based on the measured redshifts, and the corre-
sponding Einstein radius #Obs

E � f4mDðzd; zObss Þ=

½Dð0; zdÞDð0; zObss Þ�g1=2, differ from the expressions based
on the associated ones, but anyway #Obs

E does not embody
the �-correction due to the azimuthal deflection.
As a further check, we could consider static observers in

the SdS spacetime, dr=dt ¼ 0. In this case, the distances in
terms of radial coordinates are the same used in [[9],
Eqs. (15-17)]. Up to Oð"2Þ, the lens equation still has the
form of Eq. (8). Up to the next order, the critical circle
forms at

#St
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16D2
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3
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�
"2St

�
; (12)

where the index St reminds that the distances to be used are
those for the static case. The term �#�

t is still there.
Equation (12) agrees with [9] via a proper consideration
of the different expansion scheme.
We have considered static or moving observers, either

comoving with the Hubble flow or with peculiar velocities.
The common outcome is that the local coupling of � with
the lens mass gives rise to an azimuthal shift whose effect
cannot be embodied by angular diameter distances. This
has been verified considering either distances in the asso-
ciated RW metric or distances based on the observed red-
shifts. Comparison of the above results makes it clear that
the ��̂� bending has a local origin and can be distin-
guished from other contributions, which vary with different
assumptions on the distances and the radial motion and are
connected to the presence of an outer horizon in the SdS
spacetime. In a general �CDM model of universe with
dark matter, only the ��̂� contribution should be retained,
whereas other effects of the cosmological constant are
already embodied by the angular diameter distances.
That is why we end up with a lens mapping in the form
of Eq. (1). The perturbed image positions are then

# ’ #0

�
1þ D2

d

2r2�

#2
0

1þ #2
0=#

2
E

�
; (13)

with #0 ¼ ð��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4#2

E

q
Þ=2 the 0-th order solutions.

The consequent correction to the critical angular circle is
�#�

t ¼ ð1=4ÞðDd=r�Þ2#3
E. The effect on the observed an-

gles is really small, �#3
E. For a source at zs ¼ 1 behind a

lens with M� 1015M� at zd ¼ 0:3 in a standard �CDM
model, �#� � 0:1 �arcsec. Note that the local coupling
gives rise to an attractive gravitational effect which cannot
be associated with the repulsive force due to a positive �,
whose effect is incorporated in the cosmological distances.
Whereas the SdS metric provides a proper framework

for the spacetime near the lens, it cannot reproduce the
shear and focusing due to other matter inhomogeneities.
Such lensing effects can be accounted for by using prop-
erly modified expressions for the distances [5,19].
Cosmological fluids such as dark matter should contribute
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corrections to the deflection angle similar and opposite to
�, and one might be tempted to generalize our results by
replacing �=3 with the square of the Hubble constant, H2,
for a generic �CDM model. However, differently from
dark energy which is supposed to be homogeneously dis-
tributed, dark matter is highly clumped around collapsed
object so that we do not expect a local back reaction of the
kind that we found for �. Noteworthy, � is supposed to
dominate the energy budget of the universe in the very far
future so that the SdS spacetime is going to provide a very
realistic description of the universe.

Let us now briefly review some recent analyses
prompted by [6]. Some apparent disagreement in the physi-
cal interpretation seems to be only due to unphysical gauge
effects. Even if the geodesic equations in either the SdS
metric or the Schwarzschild metric are formally the same
[2], this does not imply that lensing phenomena are inde-
pendent of � [20]. Coordinate angles differ from observed
angles [6,8], and the effect of � can then be viewed as an
additional contribution / ��bro to the bending if the lens
equation is written in terms of radial coordinates instead of
angular diameter distances. However, such a contribution
is not true local bending since it can be incorporated by the
distances, see Eq. (8), as already shown in [9], section 4,
where a static observer in a local system was considered, in
[10], who perturbatively integrated the null geodesics in
the Mc Vittie metric, and in [11], who considered quanti-
ties in RW coordinates. However, in [9,11], the �mb term
in the geodesic equation discussed here was considered of
higher order and then neglected. On the other hand, {[10],
see equation (30)} likely missed such a term since he
considered the distance Dds to be much smaller than the
horizon r�, an hypothesis that is correct for local systems
but breaks down in a cosmological context.

Approaches adopting the Einstein-Strauss method with
positive�, where the matter in a spherical region collapses
to form the lens and the resulting SdS vacuole is matched
into a FRW background, were also followed. Assuming
that once the light transitions out of the vacuole all the
�-bending stops, [21] derived a contribution ��brv=3 to
the bending, in which rv, the radial SdS coordinate of the
vacuole boundary, replaces the coordinate of the observer
ro. This contribution is related to the distance from the
vacuole boundary to the lens center and do not spring from
coupling effects so that it should be incorporated in the
total distance Dd from the observer to the lens. Finally, in
[22], the light motion was integrated piecewise, but the
lens equation was not provided. Furthermore, some higher-
order terms were dropped out.

A cosmological constant, which cannot give rise to a
preferential direction, cannot make local bending by itself
[23]. Back-reaction with the lens can however brings about
a correction to the deflection near the lens. Coupling terms
of the kind of H2r2�, with � being the Newtonian gravi-
tational potential, show up in a perturbed RW metric. The
2mb�=3 contribution to the bending found in this Letter
exploiting the SdS spacetime accounts for such coupling

effects and is, together with the difference in the redshift of
the images, a novel, even if small, feature of lensing. Such
signatures are peculiar to the cosmological constant and
their detection would allow to distinguish � from other
forms of dark energy. Whereas astrometry at the �arcsec
level could be performed by future planned observational
facilities, the measurement of �zs seems even more
challenging.
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