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We discuss the use of a Langevin equation with a colored (correlated) noise to perform constant-

temperature molecular dynamics. Since the equations of motion are linear in nature, it is easy to predict

the response of a Hamiltonian system to such a thermostat and to tune at will the relaxation time of modes

of different frequency. This allows one to optimize the time needed for equilibration and to generate

independent configurations. We show how this frequency-dependent response can be exploited to control

the temperature of Car-Parrinello-like dynamics without affecting the adiabatic separation of the

electronic degrees of freedom from the vibrations of the ions.
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Solving Hamilton’s equations leads to sampling of the
microcanonical constant-energy distribution, but in real-
life experiments, it is the temperature that is kept constant.
Reproducing this condition in computer simulations is of
great importance for the investigation of a large class of
physical, chemical, and biological problems. Several ap-
proaches have been proposed to this aim [1–4]. Many of
these [1,4] rely on stochastic methods, which are a natural
choice for modeling the interactions with an external heat
bath, and which display excellent ergodic behavior due to
their random nature. A good thermostat should be able to
rapidly enforce the correct probability distribution, and
generate uncorrelated configurations. The efficiency is
particularly important in ab initio simulations because of
their high computational cost. The stochastic thermostats
used so far are based on Markovian equations of motion
and imply no memory.

Markovian processes are, however, only a subset of all
possible stochastic processes. Furthermore, the Mori-
Zwanzig theory ensures that whenever some degree of
freedom is integrated out, the dynamics of the remaining
degrees of freedom are described by a non-Markovian
Langevin equation, with a finite-range memory function
[5–7]. Hence, it is natural to explore the effect of using a
non-Markovian Langevin equation to perform constant-
temperature molecular dynamics (MD). We will show
that, by using colored noise, it is possible to influence in
a different manner the different vibrational modes of the
system. Thus, the thermostat can be adjusted to the system
under study so as to optimize its performance. This is, to
our knowledge, the first time that a colored Langevin
equation has been employed in atomistic simulations.

An area which would greatly benefit from an improved,
tunable thermostat is that of Car-Parrinello (CP)-like, ex-
tended Lagrangian schemes [8]. The idea behind this ap-
proach is very general, as it applies to any systemwhere the
forces are the result of an expensive optimization proce-

dure. This is circumvented by extending the dynamical
degrees of freedom (DOF) including the parameters to be
optimized, and introducing an artificial dynamics which
allows these extra variables to be maintained close to the
ground state. In the prototypical example of CP molecular
dynamics (CPMD), a fictitious mass is assigned to the
electronic DOF so that they can be evolved at the same
time as the ionic DOF. If the fictitious mass is small
enough, the dynamics of the electrons are adiabatically
separated from the dynamics of the ions. Hence, the elec-
trons are kept close to the ground state, while the nuclei are
evolved at the correct temperature. This same technique
can be used in classical simulations that use polarizable
force fields, where the electronic DOF describe the charge
polarization of the system [9,10]. Similar approaches have
also been suggested in the field of rare-events sampling
[11].
Controlling the temperature in these CP-like techniques

requires that one acts separately on the ionic degrees of
freedom, which must sample the correct canonical en-
semble, and on the variational parameters, which must
always remain at low temperature to minimize the error
in the forces [12]. Traditional stochastic thermostats allow
for a highly ergodic sampling of all the degrees of freedom,
irrespective of their frequency. This is beneficial for the
ionic DOFs but causes the breakdown of adiabatic separa-
tion. For this reason, deterministic thermostats of the Nosé-
Hoover (NH) type [2] have been adopted. However, the
original NH thermostat has well-known ergodicity prob-
lems, and the extension to NH chains is normally used [3],
at the price of introducing a large number of parameters,
whose effect on the dynamics is not easy to predict. In the
following, we show that by using correlated noise it is
possible to tune the coupling of a stochastic thermostat
with the various degrees of freedom. This allows one not
only to use Langevin dynamics in CP-like methods, but
also significantly improves the sampling because the ther-
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mostat is tailored to the system under study, in a predict-
able and controlled fashion.

We consider here a system described by coordinates qi,
momenta pi, and masses mi, interacting via a potential
UðqÞ, where q is the set of qi’s. The colored Langevin
equations [5,6] read

_qiðtÞ ¼ piðtÞ=mi

_piðtÞ ¼ fi½qðtÞ� �
Z t

0
dt0Kðt� t0Þpiðt0Þ þ �iðtÞ

(1)

where fi ¼ �@U=@qi are the forces, KðtÞ is the memory
kernel, and �ðtÞ is a vector of independent Gaussian noises.
In order to set the temperature to a chosen value T,
the noise term �ðtÞ needs to be related to the memory
kernel by the fluctuation-dissipation theorem
h�iðtÞ�jðt0Þi ¼ �ijmiTKðt� t0Þ.

The non-Markovian Eqs. (1) might seem at first too
complex to be used in practical applications. However,

for a rather general form of the memory kernel, KðtÞ ¼
<P

kcke
�tð�kþi!kÞ with �k > 0, it is possible to rewrite

Eq. (1) in an equivalent Markovian form by introducing a
set of auxiliary momenta [13,14]:

_qiðtÞ ¼ s0iðtÞ=m
_siðtÞ ¼ ðfi½qðtÞ�; 0; . . . ; 0ÞT �AsiðtÞ þ B�iðtÞ:

(2)

Here, si ¼ ðpi; si1; . . . ; siNÞT is a N þ 1 dimensional vec-
tor, whose first component is the canonical momentum pi

associated to the i-th DOF, and �i is a vector of Gaussian
white noises, with h�ikðtÞ�jk0 ðt0Þi ¼ �ij�ðt� t0Þ�kk0 . The

real-valued matrices A and B determine the dynamics of
pi, and can be related to KðtÞ by extending the arguments
of Ref. [13], as will be discussed elsewhere.

In order to illustrate some of the effects of using a
colored noise, we study the simple case in which

A ¼ 1

�F

0 � ffiffiffiffiffiffiffiffiffi
��F

p
ffiffiffiffiffiffiffiffiffi
��F

p
1

� �
; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�Tmi

�F

s
0 0
0 1

� �
:

(3)

This choice leads to the stationary distribution

�Pðq; p; s1Þ / exp

�
� 1

T

�
p2

2m
þ s21

2m
þUðqÞ

��
;

corresponding to the desired canonical ensemble for q and
p. The memory kernel and its power spectrum are

K ðtÞ ¼ �

�F
e�jtj=�F and Sð!Þ ¼ �

�

1

1þ �2F!
2
; (4)

respectively. Thus, the friction � determines the kernel
intensity and �F the autocorrelation time of the noise.
One can consider Sð!Þ to be a low-pass filter for the noise,
which has the cutoff frequency ��1

F . Clearly, when �F ! 0,
the white-noise limit is recovered.

We consider the dynamics of a set of harmonic oscil-
lators. In this case, Eqs. (2) are fully linear, and the
autocorrelation time for the total energy of an eigenmode
of frequency ! can be explicitly evaluated [6,15]:

�Hð!Þ ¼ �

4!2
þ 1

�
þ!2�2F

�
: (5)

We take �Hð!Þ as a measure of the time needed for the
thermalization of each individual normal mode. For a
white noise (�F ¼ 0), �H decreases with ! until it reaches
a plateau at �H ¼ 1=�, while for �F � 0, the autocorrela-

tion time has a minimum at ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð2�FÞ

p
and grows

quadratically thereafter. By properly adjusting �F, one
can select which modes are going to be maximally coupled
with the thermostat and thus reduce the coupling to the
fastest modes (see also Fig. 1).
We next consider the application of the colored-noise

thermostat [Eq. (3)] to classical MD simulation using a
polarizable force field. Here, the electronic DOF are rep-
resented by charged shells, bound with harmonic potentials
to the corresponding atomic cores. We couple a colored-
noise thermostat to the ions, and choose the filtering time
�F in such a way that the impact on the electronic DOF is
minimal. At the same time, we apply a zero temperature,
memory-less thermostat of friction �S to the electrons.
This leads to a nonequilibrium dynamics, where heat is
injected into the ionic DOF and subtracted from the elec-
tronic ones. In spite of the stochastic nature of these
equations, it is still possible to introduce a conserved
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FIG. 1 (color online). The autocorrelation time of the total
energy for harmonic oscillators of frequency ! [cf. Equa-
tion (5)] is plotted for different values of the thermostat parame-
ters. Dark curves correspond to high friction (��1 ¼ 20 fs)
whereas light ones correspond to a more gentle thermostat
(��1 ¼ 1 ps). Dotted lines correspond to white noise (�F ¼ 0)
and full ones to colored noise with �F ¼ 2 fs. The curves are
superimposed on the vibrational density of states (DoS) for a
polarizable force-field simulation of crystalline calcite, which
was obtained from the Fourier transform of the velocity-velocity
autocorrelation function. For reference, we report the shell
vibrational modes as obtained from a run where we artificially
heated the shells to 300 K.
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quantity, which can be obtained by accumulating the
change in kinetic energy due to the thermostat [4,16–18].
At variance with Refs. [4,16], the conservation of this
quantity does not rigorously measure the sampling accu-
racy, but only the accuracy of the integration.

As an example, we consider the simulation of crystalline
calcite, modeled by a polarizable force field [17]. The
thermostats are applied to the nonpolarizable ions and to
the centers of mass of the polarizable ion-shell pairs. The
electronic temperature is controlled by the damping of the
velocity of the shells relative to their partner ions. The
vibrational density of states in the absence of any thermo-
stat can be used to choose the thermostat parameters (see
Fig. 1), without having to perform expensive tests. In real
life, anharmonicity will introduce some coupling between
the normal modes, so that deviations from the predictions
of Eq. (5) are expected. However, at least in the case of
quasiharmonic modes, they will most likely reduce �Hð!Þ.

We simulated [19] a box containing 96 CaCO3 units,
with a time step of 1 fs, performing NVT runs with target
temperature T ¼ 300 K. We performed systematic tests by
varying �F, �, and �S (Fig. 2). The averages have been
computed from 1 ns-long runs, where we discarded the first
100 ps. Within a large range of parameters, the procedure
performs as expected: the temperature of the shells remains
below a few K, and the ions equilibrate to the desired
temperature. Some care must be taken in choosing the
friction �S because the shell thermostat can induce a small
drag on the ions which results in an ionic temperature
lower than desired. As �F is set to a value different from
zero, the heat transferred to the electronic DOF is reduced.
Since �H decays only quadratically for !> ��1

F , one must
make a tradeoff between heat transfer to the electrons and

the efficiency of thermalization of the fastest ionic modes.
This tradeoff can be avoided by introducing additional
degrees of freedom to the thermostat, so as to obtain a
more sharply defined filter as we will show below.
Thermostatting an ab initio CPMD is more challenging.

Since wave functions are not atom centered, the coupling
of the dynamics of the electronic DOF to the ions is
stronger than in the shell-model case, and the presence of
high-frequency components in the noise quickly heats up
the electrons. Furthermore, because of the expense of
ab initio CPMD, it is mandatory to have fast equilibration
and sampling. We will show that both problems can be
solved thanks to the tunability and predictability of our
scheme. As a test example, we ran simulations of a single
heavy water molecule in vacuum, using a standard litera-
ture setup (see Fig. 3 and Ref. [20]). We ran several
independent trajectories for a total of 90 ps, starting from
ionic configurations equilibrated at 300 K and from wave
functions quenched to the Born-Oppenheimer surface [21].
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FIG. 2 (color online). Shell temperature (TS) for calcite as a
function of the thermostat parameters. The points are joined by
continuous lines, for clarity sake. In both panels, we distinguish
the strength of the ion thermostat by the line color. Lighter or
darker (blue or red in the online version) curves correspond,
respectively, to a strong (��1 ¼ 20 fs) or mild (��1 ¼ 1 ps)
friction. In panel (a), we plot TS against �F, and we choose two
extreme values of the shell friction, ��1

S ¼ 1 ps and ��1
S ¼

50 fs, which are represented, respectively, with full and dashed
lines. In panel (b), we plot the dependence of TS versus �S. Here,
full and dashed lines correspond, respectively, to a physically
meaningful filter (�F ¼ 2 fs) and to white noise (�F ¼ 0).
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FIG. 3 (color online). Autocorrelation functions for the
squares of (a) the symmetric stretching and (b) the bending
modes of a heavy water molecule in vacuum, performed in the
NVT ensemble at T ¼ 300 K. We use a fictitious mass � ¼ 200
a.u., and a time step of 4 a.u., in order to minimize the errors on
the forces [24]. The Nosé-Hoover thermostat with chain length 4
has been used and its mass chosen so as to maximize the
coupling to the stretching mode. The NH correlation functions
(lighter lines, blue in the online version) are highly oscillating
and decay very slowly. The shading highlights the curve’s
envelope. In contrast, using the new thermostat (darker lines,
red in the online version), we find a much sharper decay, which
in the case of the stretching requires an enlarged scale to be
appreciated [inset of panel (a)]. In the inset of panel (b) we show
the relation between �H and ! for our thermostat. The parame-
ters have been optimized to obtain a sharp decay of the response
for frequencies above the stretching mode.
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We have used Eq. (4) with 5 extended momenta and fitted
A and B in order to obtain a short, optimal response time
over the ionic degrees of freedom, and an abrupt increase in
the region corresponding to electronic modes [see inset of
Fig. 3(b)]. We then compare this case with results from a
massive NH chains simulation [3,22]. In both cases, the
strength of the thermostat is such that the dynamics of the
ions is severely altered, and the drift in electronic energy is
negligible. In Fig. 3, we plot the autocorrelation function of
the squares of the normal modes. The integral of these
functions measures the time required to lose memory of the
initial configuration. The dramatic reduction of the corre-
lation time is evident.

The thermostat we have presented offers a number
of advantages. It can be used in CP-like, extended-
Lagrangian simulations, and it is also much faster in reach-
ing equilibrium than the NH thermostat. This is relevant
when performing expensive, ab initio simulations, but any
problem which requires averaging over uncorrelated con-
figurations of the system can benefit from the enhanced
relaxation time. Here, in the difficult case of a molecule in
vacuum, we have been able to reduce the correlation time
down to a fraction of a picosecond, just by estimating the
optimal parameters on the basis of analytical results. An
additional advantage is that the exact propagator in the case
of zero force is obtained easily [16], which makes the
implementation simple and robust, at variance with NH
chains [3] which require a high order integrator [23].
Finally, the introduction of highly tunable, non-
Markovian thermostats in molecular dynamics simulations
lays the foundations for the development of optimal sam-
pling algorithms to be used in free-energy calculations, or
in systems with a broad vibrational spectrum, such as path-
integrals MD. We believe that this is only a first example
and that colored noise will find many other applications in
a variety of computational problems.
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