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We develop a means of simulating the evolution and measurement of a multipartite quantum state under

discrete or continuous evolution using another quantum system with states and operators lying in a real

Hilbert space. This extends previous results which were unable to simulate local evolution and

measurements with local operators and was limited to discrete evolution. We also detail applications to

Bell inequalities and self-testing of the quantum apparatus.
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INTRODUCTION

Coherence and interferometry are central to quantum
physics, hence the fundamental importance of concepts
like global and relative phases, single and multiparticle
interferences, etc. Phases are usually described by a com-
plex number with norm one and the use of complex num-
bers seems intimately connected to the heart of quantum
physics: the complex Hilbert space and the imaginary unit i
in the Schrödinger equation. Still, we all know that the
complex field C is isomorphic to a two-dimensional real
plane, and hence it is possible, at least formally, to compute
all quantum predictions using only real numbers. It is even
well known that it is possible to simulate unitary evolution
by a quantum system restricted to real amplitudes and
matrix entries by doubling the dimension of the Hilbert
space [1]. However, this simulation breaks down for multi-
partite systems.

Consider the case of two particles, first in a product state
� � c , and let us add a phase. This phase can equivalently
be attributed to either of the two particles

ðei��Þ � c ¼ � � ðei�c Þ:
So far so good; � is only an (irrelevant) global phase, but
this is no longer the case if the particles are in an entangled
state. In such a case it is no longer clear which of the two
complex Hilbert spaces, the one describing the first particle
or the second one, should be doubled in order to replace the
imaginary part by additional real dimensions. It is even not
obvious whether such a doubling could ‘‘work locally.’’ By
this we mean the following: assume the particles, two or
possibly more, are spatially separated from each other. In

such a case one may ask whether one can double some or
all the Hilbert spaces and let each party (each party holds
one and only one of the particles) manipulate the phases
independently of each other, including in the case of
arbitrary entanglement.
Another situation in which the real simulation seems to

break down is in the case of continuous-time evolution. It is
generally understood that over time a state will evolve
according to the Schrödinger equation, picking up a com-
plex phase due to the i in the exponent. It would seem that,
although discrete time evolution may work with only real
numbers, continuous-time evolution does not.
In this Letter, we detail and expand the method in [3]

which extends the well-known simulation using real
Hilbert spaces to a more flexible simulation which requires
only local access to ancilla qubits. We also present a
modification of the Schrödinger equation that allows one
to view continuous-time evolution as a process which
happens over a real Hilbert space.
We then present two particular applications where the

multipartite simulation answers open questions. Magniez
et al. [4] developed an algorithm for testing black box
quantum devices allowing testing of quantum circuits,
but the central theorem breaks down for unitaries with
complex entries. The current work shows that it is impos-
sible to test arbitrary unitaries (in their black box model)
since the real simulation is not unitarily equivalent to the
original system, and yet it produces exactly the same
measurement results. Hence the theorem cannot be
strengthened. Also, we answer a question asked by Gisin
[5] about Bell inequalities. He asked whether any Bell
inequality could be maximally violated using states and
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measurement operators over real Hilbert spaces. Our multi-
partite simulation gives an affirmative answer to this
question.

SIMULATING QUANTUM SYSTEMS

Simulating complex quantum states and operators.—
Our goal is to simulate a given quantum system using
only real numbers in state amplitudes and operator matrix
entries. This problem can be solved by adding one extra
qubit and storing the two dimensions of the complex plane
in the two dimensions of the extra qubit. Specifically, we
map states as follows (further discussion is given in the
Appendix):

X

x

ðax þ ibxÞjxi �
X

x

axjxij0i þ bxjxij1i: (1)

In order for interference to happen properly, we need to
combine the real and imaginary parts correctly. Note that
the matrix

XZ ¼ 0 �1
1 0

� �

applied to the extra qubit corresponds to multiplying the
original state by i. With this in mind we see that the map

X

x;x0
ðax;x0 þ ibx;x0 Þjxihx0j �

X

x;x0
jxihx0j � ðax;x0I þ bx;x0XZÞ

(2)

will give operators that map a simulation state of an input
vector to the simulation state of the corresponding output
vector. Finally, for states jc i and j�i with corresponding
simulation states jc 0i and j�0i the inner products are
related by

hc 0j�0i ¼ Rehc j�i: (3)

Measurements, unitaries, and Hamiltonians.—Suppose
that we have a positive semidefinite operator P with cor-
responding simulation operator P0 given as in Eq. (2).
Equation (3) reveals that hc jPjc i ¼ hc 0jP0jc 0i; hence,
P0 is positive semidefinite. This also establishes that
POVM outcome probabilities will be the same for simula-
tion states and POVM elements as for the original states
and POVM elements.

For a unitary U, the corresponding operator U0 will also
be unitary, and any subsequent measurement outcomes
using a simulated POVM will give also the same outcome
probabilities as the original states, unitaries, and POVM.
That is to say, we have

hc jUyPUjc i ¼ hc 0jU0yP0U0jc 0i:
The same substitution will also work for Kraus operators

of completely positive maps.

For an analogue of the Schrödinger equation, we expand
the context a little. Let H be a Hermitian operator, then iH
has imaginary eigenvalues and U ¼ expðiHtÞ will be uni-
tary. LetH0 be the simulation operator corresponding toH.
ThenH0 is also Hermitian. Consider ðI � XZÞH0: like iH, it
will have imaginary eigenvalues and hence U0 ¼ expðI �
XZÞH0t will be unitary. By checking the Taylor expansion,
we can see that U0 has all real entries, so simulation states
will continue to have all real amplitudes as they evolve
continuously over time under this modified Schrödinger
equation.
Combined with the map to simulation states, the simu-

lation operators properly evolve the simulation states to
correspond with the evolution of the original system. In
particular, the evolved simulation states, combined with
the simulation measurements, give the same statistics as
the evolved original states and original measurements.
Interestingly, in this encoding more operations are pos-

sible than in the original complex description. In particular,
complex conjugation can be implemented by applying a Z
operator to the extra qubit. This allows the simulation of
arbitrary antiunitaries as well as partial antiunitaries which
act only on a subspace, plus compositions of these opera-
tors with unitaries. However, partial transposition, i.e.,
antiunitaries acting on only one factor of a tensor space,
cannot be simulated in this way.
Local operations and multipartite systems.—An impor-

tant aspect of the previous discussion is that the simulation
of any operation involving an imaginary phase involves
interacting with the one additional qubit. This means that
local operations will not in general remain local in the
simulation. We can overcome this difficulty by storing the
additional qubit in a carefully constructed two-dimensional
subspace stored in several qubits. We then add one new
qubit to each subsystem in the original system and use it to
implement local operators in the simulation.
Define the following states on k qubits with y 2 f0; 1gk:

j�0i ¼
ffiffiffiffiffiffiffiffiffiffi
1

2k�1

s
X

hðyÞeven
ð�1ÞðhðyÞÞ=2jyi

and

j�1i ¼
ffiffiffiffiffiffiffiffiffiffi
1

2k�1

s
X

hðyÞodd
ð�1ÞðhðyÞ�1Þ=2jyi;

(see the appendix for further discussion) where hðyÞ is the
number of ones in y. Interestingly, applying XZ on any one
of the qubits takes j�0i to j�1i and j�1i to�j�0i. Thus a locally
applied XZ on a single qubit has the effect of applying a
logical XZ on the nonlocal subspace spanned by j�0i and
j�1i. Now, instead of using the logical XZ in constructing
operators, we can choose any convenient XZ applied to a
single qubit out of the k that we have added. Thus local
unitaries, Hamiltonians, and other operators, can be con-
verted into local simulation operators.
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APPLICATIONS

Self-testing.—Magniez et al. (see [4]) prove the follow-
ing theorem.

Theorem 1.—(Self-testing [6]). Let T be a unitary op-
erator with real entries acting on a qubit. Suppose that
(i) jc i 2 A � B is a physical state that simulates the
maximally entangled pair of qubits j�þi, (ii) GA � IBjc i
simulates T � Ij�þi, (iii) GA �GBjc i simulates j�þi,
then GA is equivalent to T.

By ‘‘equivalence’’ we mean that there is a unitary that
maps the physical system to the logical system, plus some
ancilla, and by ‘‘simulates’’ we means that the measure-
ment outcome probabilities are identical with respect to
some specified logical and given physical operators.

One can imagine that the Hilbert spaces A and B contain
more information than just the logical qubit. Is it possible
for an adversary to use this additional information to build
physical devices that simulate their logical description but
are not equivalent to it? If T, the logical description, has
real entries then the theorem tells us that this is impossible,
but we would like to know whether the theorem can be
strengthened to include all unitaries.

Using the simulation developed above an adversary can
construct the states j�0i and j�1i on two qubits and store them
in extra dimensions of A and B. Whether applyingGA on A
orGB onB the adversary can perform the real simulation of
T using local operators that have the form required in the
theorem. Using this construction all the simulation states
give the same measurement statistics as their ideal counter-
parts. Note that our real simulation is not equivalent to the
logical system since inner products are not preserved, as
seen in Eq. (3). Thus an adversary can simulate a complex
T in a nonequivalent way and there is no stronger theorem
(with the same assumptions) for complex T. This is not a
counterexample to the original theorem because, when the
states have real amplitudes, the simulation is equal to the
logical system in a product state with the ancilla systems.

Bell inequalities.—Gisin [5] asked the question whether
Bell inequalities could always be maximally violated by
states and measurement operators on a real Hilbert space.
Let us consider the case of two particles and limit ourselves
to finite dimensional Hilbert spaces. In such a case the
Schmidt decomposition guarantees that one can choose
bases such that any state can be written using only real
amplitudes: jc i ¼ P

jrjj�jijc ji. Consider now the most

well-known Bell inequality, due to CHSH. Interestingly,
for any such state, the eigenvectors of the measurement
observables that maximally violate the CHSH inequality
can be written in the Schmidt basis f�jg and fc jg using
only real numbers [7].

The above observations led some physicists to search for
inequalities that either require complex numbers (in the
state and/or eigenvectors of observables) to be violated, or
for which the use of complex number would increase the
maximal achievable violation (this would be nice: one

could experimentally decide whether some observed cor-
relations require complex Hilbert spaces or whether real
ones suffice). The CHSH inequality requires only two
measurement on each side. Hence the natural next step
was to investigate inequalities with 3 measurements per
site, but there is only one such inequality (up to symme-
tries) and again one can chose bases such that all ampli-
tudes (state and eigenvectors) are real. Note that if one
restricts to two-dimensional Hilbert spaces this has a nice
geometrical illustration: measurements with real-
amplitude eigenvectors are represented on the Poincaré
sphere as vectors all lying on a great circle. Recently, at
last, a Bell inequality for which the optimal settings do not
lie on a circle has been found [5]. Moreover, it is elegant:
on one side the 3 settings form a orthogonal triedre (like the
xyz coordinates) and on the other side there are 4 settings
on the edges of a tetrahedron. Hence, a particular case of
the general question outline in the previous paragraph is
can this 3� 4 setting Bell inequality be violated using only
real amplitudes by the same amount as using complex
numbers?
Navascués et al. [8], using a simulation technique simi-

lar to the one presented in [3], and Pál and Vértesi in [9]
proved that indeed real numbers are sufficient for maximal
violation of all bipartite Bell inequalities. The present work
answers the question in the affirmative for inequalities
involving any number of parties. However, the required
dimension increases by a factor of 2 with each additional
system added.

CONCLUSION

We have shown that complex numbers are not required
in order to describe quantum mechanical systems and their
evolution, including continuous-time evolution and the
evolution of multipartite systems. Specifically, there is a
simulation of such systems using only states and operators
with real coefficients and most importantly this can be
done with the same assumptions about which subsystems
are allowed to interact (that is, with the same local
structure).
We illustrated the nontrivial implications for self-testing

quantum apparatus and for testing Bell inequalities.
We are grateful to Sandu Popescu for asking about the

connection to Schrödinger’s equation and for helpful dis-
cussions on this topic. This work was partially supported
by NSERC, DTO-ARO, ORDCF, CFI, CIFAR, Ontario-
MRI, CRC, OCE, QuantumWorks, MITACS, the Swiss
NCCR-QP and European IP QAP.

APPENDIX: WHERE DID THESE STATES COME
FROM?

Simulation states.—There is some ambiguity in (1) due
to the fact that we can multiply a state by a global phase
without changing the behavior of the system, but it does
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result in a different (and possibly orthogonal) simulation
state. We can resolve this difficulty by looking at the
density operator. A n� n density operator will be mapped
to a 2n� 2n operator with double the rank and trace 2. To
get a density operator we thus divide by 2. For a pure state
density operator, the simulation density operator is rank 2
with eigenvalue 1=2 occurring with multiplicity 2.
Consider the following. For a pure state jc i ¼ P

xðax þ
ibxÞjxi (with density operator � ¼ jc ihc j) the simulation
density operator will be

�0 ¼ 1

2

X

x;x0
jxihx0j � ððaxax0 þ bxbx0 ÞIþðbxax0 � axbx0 ÞXZÞ:

This can be written as an equal ensemble of the states

j�1i ¼
X

x

jxi � ðaxj0i þ bxj1iÞ

j�2i ¼
X

x

jxi � ð�bxj0i þ axj1iÞ:

The first of these is the state given in Eq. (1). For a
Hermitian operator P a brief calculation shows that
TrðP0�0Þ ¼ h�jP0j�i, where j�i is any normalized linear
combination of j�1i and j�2i. Thus, we can replace �0 with
the pure state j�1i and get the same outcome statistics for
any POVM.

The two-dimensional space of pure states that arises by
applying the simulation map on a pure state corresponds to
the possible global phases. In fact, by multiplying the
original state by a phase and applying Eq. (1) one arrives
at a superposition of j�1i and j�2i. Thus arbitrarily choos-
ing j�1i instead of another state in the subspace is the same
as arbitrarily fixing a global phase.

Multipartite simulation states.—One way of deriving j�0i
and j�1i is to use the stabilizer formalism. Note that we want
our two-dimensional subspace to have the property

� ðXZÞjðXZÞljc i ¼ jc i
for all jc i in the subspace. This just says that applying a
phase of i independently to two different subsystems
should be the same as applying a phase of �1. There are
k� 1 independent operators of this form (for example,
they can all be written as products of �ðXZÞ1ðXZÞj for

various j) so there is a two-dimensional subspace that is
stabilized by these operators. The states j�0i and j�1i form a
convenient basis for this space. Moreover, this is the unique
subspace that has the desired property.
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