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André A. Moreira,1,* José S. Andrade, Jr.,1,2 Hans J. Herrmann,1,2 and Joseph O. Indekeu3

1Departamento de Fı́sica, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil
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We investigate topologically biased failure in scale-free networks with a degree distribution PðkÞ /
k��. The probability p that an edge remains intact is assumed to depend on the degree k of adjacent nodes

i and j through pij / ðkikjÞ��. By varying the exponent �, we interpolate between random (� ¼ 0) and

systematic failure. For �> 0 (<0) the most (least) connected nodes are depreciated first. This topological

bias introduces a characteristic scale in PðkÞ of the depreciated network, marking a crossover between two

distinct power laws. The critical percolation threshold, at which global connectivity is lost, depends both

on � and on �. As a consequence, network robustness or fragility can be controlled through fine-tuning of

the topological bias in the failure process.
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Scale-free networks, with a power-law degree distribu-
tion PðkÞ / k��, are remarkably resistant to random failure
[1,2]. This quality is important when failure is to be
avoided, as in the air-transportation network. It has been
speculated that, also in nature, scale-free design evolves as
a way to achieve robustness [3]. On the other hand, robust-
ness may be a problem when one tries to halt an epidemic.
The fundamental question we ask and answer in this work
is how one can delicately control whether a network is
fragile or robust.

Previous work has mostly concentrated on homogene-
ous networks, in which all edges have the same chance to
fail. However, by design or evolution the most critical
edges of the network may become less prone to failure.
Also, a targeted attack can disrupt the network after only a
small fraction of edges fail [1,4]. This shows that in het-
erogeneous networks the topology alone does not deter-
mine the susceptibility of breakdown.

The critical properties of static phenomena and dynami-
cal processes are affected by the topology of the network of
interactions [5]. It was recently shown [6,7] that, by ac-
counting for a topology dependence in the interaction
strength between the nodes, Jij / ðkikjÞ��, one obtains a

critical behavior that mimics the case of homogeneous
interaction but with a different degree distribution. The
system with exponent � and topology-dependent interac-
tions can be mapped to a homogeneous one, � ¼ 0, but
with an effective exponent �0, given by [6,7]

�0 ¼ �� �

1� �
: (1)

We focus on failure in scale-free complex networks,
mediated by a dynamical process that depends on the net-
work topology. Disregarding the presence of correlations,
any such dependence has to be related only to the node
degree k. We have to choose between two possible ap-
proaches, namely, failure of the nodes or, as we implement

here, failure of the edges. We express the failure probabil-
ity for an edge between nodes i and j as qij ¼ qijðki; kjÞ.
We assume that the network depreciation occurs through a
probability of occupation of an edge pij ¼ 1� qij, which

depends on the degrees of the vertices,

pij / wij ¼ ðkikjÞ��; (2)

where wij is the topology-dependent weight of the edge.

Equation (2) is in the same spirit as the degree-dependent
interaction proposed in [6,7]. Since failure can be related to
the purely geometrical model of percolation, its under-
standing does not require interactions but can be achieved
directly in terms of topological properties.
A topology-dependent depreciation allows one to inter-

polate smoothly between random failure (� ¼ 0) and in-
tentional attack of links between hubs (�> 0), or
intentional depreciation of edges between the least con-
nected nodes (�< 0). We shall see that � 2 ½2� �; 1�
defines the useful range of topological bias in the context
of scale-free networks with finite mean degree (� > 2).
Degree-dependent failure was also studied in [8] for the
case of node removal, while edge removal was investigated
in [9].
For uncorrelated networks, homogeneous random fail-

ure (� ¼ 0) can be solved using a mean-field approach
[2,10–12]. Close to the critical fraction of occupied edges
fc, the size of the largest connected cluster grows as ðf�
fcÞ�, where the critical exponent � depends on � [12]. For
2<� � 3 the critical point vanishes, fc ! 0. As a con-
sequence, we may say that networks with � � 3 are robust
while networks with � > 3 are fragile. All these results,
however, are only relevant for the case of random failure.
Henceforth, we will call the regime �> 0 ‘‘centrally
biased’’ (CB). The converse regime, �< 0, will be termed
‘‘peripherally biased’’ (PB).
To build our scale-free networks, we use the configura-

tion model [11]. The parameters of this model are the
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exponent �, the number of nodes (or vertices) Nv, and the
minimum degree allowed kmin. Unless said otherwise,
all the networks studied in this work have kmin ¼ 2.
Depending on these parameters and on the particular real-
ization, we obtain a different number of edges Ne. In this
model, the degrees of the nodes are determined initially
from the desired distribution and then connections are
assigned at random.

To study the depreciation process, we start from a total
failure scenario, i.e., with all edges being initially removed
from the network. We then gradually include the edges
back, with probability proportional to some weight wij that

we will assume to follow Eq. (2). By stopping this process
at intermediate steps, we can obtain results for the perco-
lation problem as the fraction of occupied edges grows
from zero to one.

We now determine the probability PijðfÞ that a particu-
lar edge connecting nodes i and j is present in the network
after a fraction f of the edges has already been included.
This probability can be identified as PijðfÞ ¼ 1�
Q

n
t¼1ð1� wij=ZtÞ, where Zt is the mean (over the inclusion

process) of the sum of weights of all edges that have not yet
been included in the network at step t, and n ¼ fNe is the
number of included edges. Assuming wij � Zt, we can

write

PijðfÞ � 1� e�DðfÞðkikjÞ��
; (3)

where the parameter DðfÞ can be determined usingP
Pij ¼ n. Using wij as defined in Eq. (2), the

Kasteleyn-Fortuin construction [13] allows us to draw a
parallel between the probability Pij and the degree-

dependent interaction previously proposed in [6,7].
We now define �kðfÞ as the mean probability that an

edge from a node with degree k is present in the depreci-
ated network. We then have to average Pij over the nearest

neighbors of a node with degree k, �k ¼
R1
kmin

PnðknÞ�
ð1� exp½�DðfÞðkknÞ���Þdkn. For uncorrelated networks
the degree distribution of a neighbor is given by PnðknÞ ¼
PðknÞkn=hki. Performing the integration and examining the
asymptotic behavior of the resulting incomplete Gamma
function, we find that �k is well approximated by

�k � 1� e�CðfÞk��
; (4)

with CðfÞ ¼ ½k��
minð�� 2Þ=ð�� 2þ �Þ�DðfÞ, provided

� 2 ½2� �; 1�. The same range of � is also featured in
previous work on networks with degree-dependent inter-
actions [6,7]. Equation (4) is confirmed by the numerical
results shown in Fig. 1.

Equation (4) can be used to determine the average
degree of a node after depreciation, k0ðkÞ ¼ k�k. From
that we can obtain the degree distribution of the depre-
ciated network: P0ðk0Þ � k0�� for CðfÞk�� � 1, and

P0ðk0Þ � k0��0
for CðfÞk�� � 1, where �0 is given by

Eq. (1). We find that the degree distribution after deprecia-

tion exhibits a crossover at a scale given by ks / CðfÞ1=�.

As expected, the crossover is not present in the random
failure case, � ¼ 0. However, if the failure process is
affected by the topological properties of the network, as
modeled by Eq. (2), we have a characteristic scale ks that
has not been observed before. The presence of this cross-
over is supported by the numerical results shown in Fig. 2.
It is interesting to note that whether � or �0 controls the
decay at large degree depends on the sign of �. If �> 0
(CB), we have � < �0 and �0 controls the decay at large
degree, while for �< 0 (PB) the larger exponent, �, is the
controlling one. Thus, the largest of the two exponents �
and �0 controls the asymptotic decay. A robust network
with � � 3 under CB and a fragile network with � > 3
under PB may result in networks with similar degree
distributions after depreciation. The numerical results
shown in Fig. 2 correspond to the degree distributions of
networks under CB and PB failure.
Next we investigate the critical behavior associated with

percolation. A network is above the critical point when a
node connected to another node in the spanning cluster has
on average at least one other connection, thus assuring that
the cluster does not fragment. For an uncorrelated network,
this condition is equivalent to hk02i=hk0i> 2 [2]. In order to
determine the critical fraction fc we perform the deprecia-
tion process until this critical condition is reached. In the
simplest case where � ¼ 0, if � > 3, the ratio hk02i=hk0i
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FIG. 1 (color online). Average degree reduction in the depre-
ciated network as a function of the original node degree. The
main panel shows results for networks with � ¼ 4 submitted to
PB with � ¼ �1. One can see that the fraction k0=k grows as a
power law with degree k, saturating at 1 at a scale that depends
on the fraction f ¼ n=Ne of edges in the depreciated network.
The dotted lines are the numerical results obtained from 10
network realizations of size Nv ¼ 105. For each one of these
networks, the depreciation has been applied 10 times. The
continuous lines are the best fit to the data of Eq. (4) with the
free parameter CðfÞ ¼ 0:025, 0.22, and 0.92 for f ¼ 0:1, 0.3,
and 0.9, respectively. The inset shows the same as in the main
panel, but for a network with � ¼ 2:5 subjected to CB with � ¼
0:5. In this case, the fraction k0=k decays with k. For small scales
one may find a saturation depending on the fraction of edges in
the depreciated network. The continuous lines are the best fits to
the data of Eq. (4) with values CðfÞ ¼ 0:28, 2.5, and 19 for f ¼
0:1, 0.3, and 0.9, respectively.
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converges to a finite value as Nv ! 1. In this case fc > 0,
characterizing a fragile network regime. On the other hand,

when � < 3, one obtains hk02i / k3��
max , where kmax is the

largest degree of a finite network. If no other constraint is

imposed, kmax / N1=ð��1Þ
v [2,14], resulting in fc /

N�ð3��Þ=ð��1Þ
v , for 2< �< 3. As long as � < 3, fc ! 0

as Nv ! 1, characterizing the robust network regime.
For CB (�> 0) it is possible that � � 3 while �0 > 3.

Since the tail of the distribution at large values of k0 decays
as P0ðk0Þ / k0��0

, the second moment hk02i no longer di-
verges and a robust network becomes fragile under CB. On
the other hand, for PB (�< 0), �0 < �, and the larger
exponent, �, should control the decay of the tail of the
degree distribution. Therefore, one may think that for � >
3, hk02i also does not diverge under PB and that a fragile

network cannot turn robust. This simple reasoning is mis-
taken, however, as we show in the following.
It is possible that the crossover scale ks becomes so large

that in practice it does not influence a finite network. That
is the case, for instance, of the distribution for f ¼ 0:1 and
Nv ¼ 105, shown in the inset of Fig. 2. It may be the
case that, at the critical point of PB failure, a network
with �0 � 3 never displays an observable crossover, irre-
spective of the system size; that is,

ksðfcðNvÞÞ> kmaxðNvÞ: (5)

When Eq. (5) holds true, Eq. (4) may be rewritten as k0 ¼
CðfcÞk1��. In this limit one can find a linear relation
between the parameter CðfcÞ and the occupation fraction
fc ¼ hk0i=hki ¼ Chk1��i=hki. The second moment can be
identified as hk02i ¼ C2ðhk2�2�i � hk1�2�iÞ þ Chk1��i.
From the critical condition hk02i=hk0i> 2 we get

fc ¼ hk1��i2
hki½hk2�2�i � hk1�2�i� : (6)

As long as 2<�0 and 2< �, the moments hk1��i and hki
should both converge to finite values independent of Nv.
The moment hk1�2�i may or may not diverge, but at large

scales it will grow slower than hk2�2�i ! k3�2���
max . Thus,

considering that kmax / N1=ð��1Þ
v [2], we arrive at the be-

havior
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FIG. 3 (color online). The values fc of the fraction of edges in
the depreciated network at the critical condition as a function of
the network size Nv. Criticality is defined as the point where
hk02i=hk0i ¼ 2 [2], To compute this critical fraction we average
over 104 network realizations for each set of parameters. For
each network we apply the percolation processes 100 times. For
networks with � ¼ 2:5 submitted to CB with an effective value
�0 ¼ 4 (continuous black line), we observe that the critical
fraction fc converges to a finite value as Nv grows, confirming
the conjecture that a robust network may turn fragile under CB.
The opposite case, a network with � ¼ 4 submitted to PB with
an effective �0 ¼ 2:5 (dashed red line), has a critical fraction that

decays with Nv as a power law, fc / N�1=�
v . The best fit to the

data in this case results in 1=� ¼ 0:35	 0:02, consistent with
the value 1=3 expected from Eq. (7). This result shows that a
fragile network under PB can behave in the same fashion as a
robust network with a degree distribution controlled by �0 under
random failure.
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FIG. 2 (color online). Degree distribution of the depreciated
network. This result was obtained for 10 network realizations of
size Nv ¼ 105. For each network realization, the depreciation
has been applied 10 times. In the main panel we show the degree
distribution for networks with � ¼ 2:5 submitted to CB failure
with � ¼ 0:5. From Eq. (1) we expect the value �0 ¼ 4:0 for the
depreciated network. As a guide to the eye, the dotted lines
indicate the power-law decays with exponents 2.5 and 4. One can
see that for small degree the distribution initially decays with a
slope very close to �, and then crosses over to a decay with a
slope close to �0 at a scale that depends on the fraction f of edges
in the depreciated network. This shows that the topology-
dependent failure process introduces a characteristic scale in
the degree distribution of the originally scale-free network. In
the inset we show results for networks with � ¼ 4 subjected to
PB failure with � ¼ �1, which is equivalent to an exponent
�0 ¼ 2:5. Contrary to the result of the main panel, one sees a
crossover from a slope �0 at small degree to a slope � at large
degree. The minimum degree was set to kmin ¼ 4 in the results of
the inset and kmin ¼ 2 in the main panel. Surprisingly, for the
case f ¼ 0:5 the degree distributions in the inset and the main
panel are remarkably similar. To illustrate this similarity we
included the results for f ¼ 0:5 from the main panel in the inset
and vice versa; these are the dashed (blue) lines. Although the
two cases start with distinct degree distributions at f ¼ 1, we
obtain similar distributions at a certain point of the depreciation
process.

PRL 102, 018701 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

9 JANUARY 2009

018701-3



fc / N�0�3=�0�1
v : (7)

This result shows not only that PB can turn a fragile net-
work robust but also that the critical exponent with which
the threshold fc approaches zero is the same as expected
for normal percolation (� ¼ 0) for a network with a degree

distribution decaying as PðkÞ / k��0
.

We can now check the self-consistency of our initial
assumption, Eq. (5), that networks with �0 � 3 at the
critical point of PB failure do not present a crossover. As

mentioned before, the crossover scale is given by ks /
CðfÞ1=�. At the critical point Eq. (7) then implies ks /
Nð�0�3Þ=½�ð�0�1Þ�

v , while kmax / N1=ð��1Þ
v . From this we ob-

tain ðks=kmaxÞ��ð��1Þ / N3����
v . As long as �< 3� �,

the crossover scale grows faster than the maximum degree,
implying that critical networks with �0 � 3 and suffi-
ciently strong PB do not display a crossover in their de-
gree distributions. However, for weak PB, 3� � < �< 0,
Eq. (5) is violated and the network may remain fragile.

Figure 3 shows numerical results confirming that a
robust network with � ¼ 2:5 submitted to CB failure
with � ¼ 0:5 turns fragile. In contrast, the second set of
results demonstrates that a fragile network turns robust
even for � ¼ 3� � ¼ �1, which is on the borderline
between weak and strong PB.

Our assumption that the probability of failure depends
on degree k can be justified in different contexts. In artifi-
cial networks, e.g., air transportation [15], the capacity of
the nodes scales with k. Depending on whether k or ca-
pacity grows faster, this system should be better modeled
by CB or PB failure, respectively. Software systems [16]
and metabolic networks [17] consist of many agents or
nodes acting together in some function. If all agents are
needed, the lack of any of them can interrupt the process.
Alternatively, if any of the agents can start it, only removal
of all edges halts the process. In both cases, depending on
k, the edges turn more fragile or robust. Further, if disrupt-
ing the network is desirable, as in gene fusion networks of
cancer development [18] or terrorist networks, the design
of a dynamical process that targets links between the most
connected nodes (CB) would be more efficient to globally
break down the system. Also, to reduce the risk of epi-
demic spreading, it is better to disinfect or immunize
connections between hubs than connections between small
(air)ports. Note that our analysis does not account for
dynamical correlations in the failure process. It can happen
that removal of a single edge triggers a breakdown, even if
this edge only links to one of the least connected nodes
[19].

We conclude that topologically biased failure can have a
dramatic effect on the percolation properties of scale-free
networks. For central bias (CB, 0<�< 1), the degree
distribution initially decays with the exponent � up to a
certain scale that depends on the fraction of occupied

edges, and then crosses over to a decay with an exponent
�0 > � defined as in Eq. (1). For peripheral bias (PB, 2�
� < �< 0) the crossover is also present but with �0 con-
trolling the early decay and the exponent � > �0 appearing
at large degree. Our results also demonstrate that a robust
network, for which the critical fraction fc converges to
zero as the network grows, may turn fragile when subjected
to CB (�> 0). Conversely, a fragile network, for which the
critical point is larger than zero at any system size, may
become robust when subjected to strong PB, �< 3� �.
Fragility or robustness of a network is thus not only de-
pendent on the exponent � but can be tuned quantitatively
by the exponent � characterizing the topological bias.
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