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Using the Gauss-Bonnet theorem we deconvolute exactly the Mayer f-function for arbitrarily shaped

convex hard bodies in a series of tensorial weight functions, each depending only on the shape of a single

particle. This geometric result allows the derivation of a free energy density functional for inhomogeneous

hard-body fluids which reduces to Rosenfeld’s fundamental measure theory [Phys. Rev. Lett. 63, 980

(1989)] when applied to hard spheres. The functional captures the isotropic-nematic transition for the

hard-spherocylinder fluid in contrast with previous attempts. Comparing with data from Monte Carlo

simulations for hard spherocylinders in contact with a planar hard wall, we show that the new functional

also improves upon previous functionals in the description of inhomogeneous isotropic fluids.
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With the advance in particle synthesis nonspherical
colloids of various shapes can be designed giving rise,
e.g., to dispersions of gibbsite platelets [1] or mixtures of
silica spheres and silica-coated boehmite rods [2]. These
colloidal suspensions display rich phase behavior includ-
ing isotropic, nematic, and different crystalline phases. A
powerful tool for the characterization of such systems in
the presence of inhomogeneities is density functional the-
ory (DFT) [3], which, in contrast to other approaches such
as integral equation methods, is susceptible to comply with
exact statistical mechanical sum rules [4] and possesses
comparatively transparent derivations. In a seminal work
[5] Rosenfeld constructed a DFT for spherical hard parti-
cles on the basis of a careful inspection of the second order
virial expansion from which he identified an appropriate
set of one-center weighted densities. This fundamental
measure theory (FMT) was successfully used to describe
the inhomogeneous hard-sphere fluid, including mixtures,
and it was generalized for arbitrarily shaped hard bodies
[6]. However, the original nonspherical FMT has the draw-
back that it does not reproduce the correct second virial
coefficient for the nonisotropic fluid. Even worse, it does
not yield a stable nematic phase for a rod fluid. This failure
has understandably triggered some effort during the last
years which was devoted to the construction of modified
FMTs being compatible with the Onsager limit while
providing the virtues inherent to FMT for spheres.
However, in order to recover the exact second virial coef-
ficient, specific assumptions had to be made for the shape
of the particle, e.g., parallel hard cubes [7] or mixtures of
colloidal spheres with thin needles or platelets [8].

While in the above work generically new weight func-
tions depending on the properties of several species (e.g.,
sphere and needle) are constructed from geometric argu-
ments which apply only in certain limiting cases (e.g.,
vanishing thickness), in the present work we devise an
approach which sets out from the exact expression for

the Mayer f-function of arbitrary convex hard bodies in
terms of (geodesic) curvatures and a deconvolution in
(tensorial) one-center weight functions, depending each
on the properties of only one species of the fluid compo-
nents. In its simplest form with only two additional tenso-
rial densities, our theory reduces to the former FMTs for
spheres [5,9], while it leads to a stable nematic phase.
As a starting point we use the excess (over ideal gas) free

energy functional F ex½f�ig� for an inhomogeneous
�-component hard-body mixture behaving as

F ex!�kBT

2

X�

i;j¼1

Z
dRidRj�iðRiÞ�jðRjÞfijðRi;RjÞ

(1)

in the dilute limit �i ! 0. Here we have introduced the
average particle number density �iðRiÞ of component i
depending on the position ri and orientation $i of the
particles; i.e., Ri ¼ ðri; $iÞ. The interaction between two
hard bodies Bi and Bj enters via the Mayer f-function

fijðRi;RjÞ ¼
�
0 if Bi \Bj ¼ [
�1 if Bi \Bj � [:

(2)

For the moment we fix the particle orientation $i. Convex
Bi can then be parametrized by the vector Riðr̂Þ pointing
from some reference point, e.g., the center of mass, to the
point on the surface ofBi which lies in the direction of the
unit vector r̂ ¼ r=jrj. Using the outward normal niðr̂Þ to
the surface of Bi at Riðr̂Þ we can define the weight func-

tions of Bi by !ð3Þ
i ðrÞ ¼ �ðjRiðr̂Þj � jrjÞ, !ð2Þ

i ðrÞ ¼
�ðjRiðr̂Þj � jrjÞ=ðniðr̂Þr̂Þ, !ð1Þ

i ðrÞ ¼ Hiðr̂Þ
4� !ð2Þ

i ðrÞ, !ð0Þ
i ðrÞ ¼

Kiðr̂Þ
4� !ð2Þ

i ðrÞ, ~!ð2Þ
i ðrÞ ¼ niðr̂Þ!ð2Þ

i ðrÞ, ~!ð1Þ
i ðrÞ ¼ Hiðr̂Þ

4� ~!ð2Þ
i ðrÞ

(see Ref. [6]). The factor ðniðr̂Þr̂Þ�1, which does not appear
in Rosenfeld’s original proposal [6], follows from parame-
trizing Bi through Riðr̂Þ. It guarantees a correct weighting
according to the surface area of Bi. The mean and
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Gaussian curvature at that surface point are denoted by
Hiðr̂Þ and Kiðr̂Þ, respectively. They are obtained from the
local principal curvatures �I

i and �II
i according to Hi ¼

1
2 ð�I

i þ �II
i Þ and Ki ¼ �I

i�
II
i . Then the Mayer function fij

can be written as a deconvolution,

fij¼ I��ij �!ð0Þ
i �!ð3Þ

j �!ð1Þ
i �!ð2Þ

j þ ~!ð1Þ
i � ~!ð2Þ

j þði$ jÞ;
(3)

except for the term I��ij which is derived exactly below.

Here (i $ j) stands for the previous terms with exchanged
indices i and j. With the standard scalar product � for

vectors, the convolution product � is defined by !ð�Þ
i �

!ð�Þ
j ¼ R

dr!ð�Þ
i ðr� riÞ �!ð�Þ

j ðr� rjÞ for fixed particle

orientation $. The deconvolution Eq. (3) is remarkable
as it shows that the excess free energy density �, defined
through F ex ¼ kBT

R
dr�ðrÞ, can be constructed as a

function of the weighted densities

n�ðrÞ ¼
X�

i¼1

Z
d$dr0�iðr0; $Þ!ð�Þ

i ðr� r0; $Þ (4)

such that the exact low-density limit Eq. (1) is recovered
(given that I��ij ¼ 0, which holds for spherical particles). It

follows with an exact relation from scaled-particle theory
that [5,6,10]

� ¼ ��� � n0 lnð1� n3Þ þ n1n2 � ~n1 ~n2
1� n3

þ �

ð1� n3Þ2
(5)

with � ¼ 1
24� ðn32 � 3n2 ~n2 ~n2Þ and ��� set to zero. In this

Letter we derive for the first time the contribution ���

based on an explicit exact expression for I��ij in Eq. (3). In

the past I��ij and hence��� were not known and neglected

with severe consequences for nonspherical particles such
as a wrong low-density limit. Even worse, a simple calcu-
lation shows that the weighted densities defined above are
independent of a given orientational distribution in a bulk
fluid. As a consequence, � from Eq. (5) with ��� ¼ 0 is
independent of the fluid anisotropy. Hence the FMT does
not capture the tendency of nonspherical particles to adopt
a phase other than the isotropic one, while a nematic phase
is observed in a fluid of extended rods. We now remediate
this failure by deriving I��ij exactly such that ���, which

arises from curvature asymmetry, can be taken into
account.

As has been observed by Rosenfeld [6], the Gauss-
Bonnet theorem from differential geometry [11] can be
used to rewrite fij in terms of integrals of the Gaussian

curvature K. For convex Bi and Bj the surface of the

intersection Bi \Bj consists of two surfaces, @Bi \Bj

and Bi \ @Bj, which are bounded by the same closed

curve C ¼ @Bi \ @Bj. Thus, with the arclength s and the

geodesic curvature �g
i of C on @Bi, one finds

Z

@Bi\Bj

KidAiþ
Z

Bi\@Bj

KjdAjþ
Z

C
ð�g

i þ�g
j Þds¼�4�fij:

(6)

From differential geometry we find the explicit expression

�g
i þ�g

j ¼Hi

1�ninj

jni�njj���i

ðvIinjÞ2�ðvIIi njÞ2
ð1þninjÞjni�njjþði$ jÞ

(7)

involving the deviatoric curvature ��i ¼ 1
2 ð�I

i � �II
i Þ

which is a measure of the deviation from sphericity. The
unit vectors vIi and v

II
i lie in the tangent plane (perpendicu-

lar to ni) and point into the directions of the principal
curvatures �I

i and �II
i ; thus, v

I
i , v

II
i , and ni constitute an

orthonormal basis of R3. Using the relations
R Ki

4� dAi ¼
!ð0Þ

i �!ð3Þ
j ,

R
C
Hi

4�
ds

jni�njj ¼ !ð1Þ
i �!ð2Þ

j , and
R
C
Hininj

4� �
ds

jni�njj ¼ ~!ð1Þ
i � ~!ð2Þ

j , one obtains Eq. (3) with

I��ij ¼
Z

@Bi\@Bj

��i

4�

ðvIinjÞ2 � ðvIIi njÞ2
ð1þ ninjÞ

ds

jni � njj (8)

which cannot be written as a simple convolution of weight
functions depending only on the properties of one species
each. One can, however, expand the integrand in a Taylor
series in powers of the components of unit vectors; i.e.,
ð1þ ninjÞ�1 ¼ 1� ninj þ ðninjÞ2 � . . . . Pursuing the

expansion up to order n allows for a deconvolution of
I��ij in terms of tensorialweight functions of rank up to nþ
2. In the simplest possible scenario we take n ¼ 0, mean-
ing that we use the approximation ð1þ ninjÞ�1 � 	 ,

where we have introduced the constant 0 � 	 � 2 which
can be different from 1 in order to compensate for the error
arising from the omission of higher order terms in the
expansion. In principle, the deconvolution can be per-
formed exactly such that the Onsager limit is reproduced
for long rods. However, in order to guarantee that the
theory can be treated efficiently numerically, we truncate
the series of convolution products.
The deconvolution of I��ij to the order n ¼ 0 reads

I��ij � 	!$ð1Þ
i �!$ð2Þ

j , where

!$ ð1Þ
i ¼ !ð2Þ

i

��iðr̂Þ
4�

ðvIi ðr̂ÞvIi ðr̂ÞT � vIIi ðr̂ÞvIIi ðr̂ÞTÞ (9)

and !$ð2Þ
i ¼ niðr̂Þniðr̂ÞT!ð2Þ

i . These tensorial weight func-
tions can be represented as 3� 3 matrices with the dyadic

product ðabTÞij ¼ aibj and the scalar product A
$ � B$ ¼P

i;jAijBji needed for the convolution.

Analogous to the derivation of Rosenfeld’s excess free
energy density [5,6,10], we obtain the additional term

��� ¼ �	
Tr½n$1n

$
2�

1� n3
(10)

in the excess free energy density �, Eq. (5). Interestingly,
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deficiencies of � for hard spheres, e.g., overstabilized
crystals and wrong dimensional crossovers [12], had led
Tarazona [9] to introducing the weighted density n$2 for
spheres and constructing � as

� ¼ 3

16�
ð ~nT2 n$2 ~n2 � n2 ~n2 ~n2 � Tr½n$3

2� þ n2 Tr½n$2
2�Þ:
(11)

This � yields the exact result in one dimension for the
monocomponent system, describes the hard-sphere crystal
very well, and provides also the presently best FMT for
hard-sphere mixtures [13]. Here we provide for the first
time n$2 as a building block for� in the spirit of Rosenfeld,
i.e., from an inspection of the low-density limit rather than
the crystal phase. In the following, we use� from Eq. (11),
but we have checked that the differences arising from the
different expressions for � are overruled by the influence
of the different values of 	 in Eq. (10).

Concerning the choice of 	 we note that Rosenfeld’s
FMT for nonspherical particles [6] is recovered for 	 ¼ 0.
In the case of spheres the deviatoric curvature �� vanishes

and therefore !$ð1Þ � 0 and our FMT reduces to
Rosenfeld’s [5] when applied to the hard-sphere fluid.
The term ��� also vanishes in the isotropic bulk fluid so
that we obtain the exact second virial coefficient B2 for the
isotropic bulk fluid from our theory. Deriving from our
theory B2 for fixed particle orientations$ and$0 yields an
approximation to the mutual excluded volume vð$;$0Þ.
We find that for the isotropic (sphero)cylinder fluid the
value 	 ¼ 5

4 minimizes the average deviation (least

squares) of vð$;$0Þ from the exact result. Including
higher order terms in the Taylor expansion of ð1þ
ninjÞ�1 in Eq. (8) shows the convergence of the series to

the exact vð$;$0Þ. In particular, the inclusion of the next
higher relevant order (n ¼ 2) yields an improvement
which is very similar to that due to the 	-correction.

For the calculation of the isotropic-nematic transition we
consider a bulk fluid of spherocylinders (length L, diameter
D) with particle density � and packing fraction 
 ¼ n3.
The spherocylinders are assumed to be distributed as a
function of their azimuthal angle # according to the nor-
malized distribution function gðcos#Þ. The orientation
dependent density distribution is thus given by �ð$Þ ¼
�gðcos#Þ � �gðxÞ. It follows that the tensorial weighted
densities depend on gðxÞ via the second moment I2 ¼:R
1
0 dxx

2gðxÞ. The vectorial densities vanish as well as the

nondiagonal elements of the tensorial weighted densities.
One can check that Trn$1 ¼ 0 and Trn$2 ¼ n2, which hold
for arbitrary �ðr; $Þ. For given fixed volume V, chemical
potential �, and particle number density � ¼ N

V , the equi-

librium orientational distribution gðxÞ must minimize the
grand potential density �=V which leads to gðxÞ ¼
const� expð�2x2Þ with �2 ¼ � 1

�
@�
@I2

and a normalization

constant. This derived distribution has been used as an
empirical input for the description of the nematic phase
in previous work [14].

In Fig. 1 we show the resulting isotropic-nematic tran-
sition for 	 ¼ 5

4 and 	 ¼ 1:6. The latter value was deter-

mined empirically in order to obtain the best fit to the
simulation data by Bolhuis and Frenkel [15] at small
L=D. The value 	 ¼ 1:6 agrees with the observation that
	 > 5

4 improves the accuracy of the FMTon the level of B2

for small angles between the spherocylinders which occur
more frequently in the nematic phase than in the isotropic
phase. When L=D grows large, j�iso � �nemj at coexis-
tence is underestimated. However, our theory provides a
good description of the location of the isotropic-nematic
transition of the hard-spherocylinder fluid. This has to be
viewed in contrast with the previous FMTs for nonspher-
ical particles: Rosenfeld’s FMT [6] (	 ¼ 0) does not yield
a stable nematic phase at all, and the DFT by Cinacchi and
Schmid [16], which yields an isotropic-nematic transition,
is no longer based on one-center convolutions, which
makes it computationally difficult.
Furthermore, our new functional yields without any

empirical fitting accurate results for inhomogeneous fluids.
In Fig. 2 we show the results of canonical Monte Carlo
simulations of a hard-spherocylinder fluid close to a hard
wall. We explore densities below the nematic wetting
transition, so that the density �#ðzÞ is a function only of
the distance z between the center of the spherocylinder and
the wall and of the orientational angle # 2 ½0; �=2� be-
tween the cylinder axis and the wall normal. We tested that
finite-size effects can be neglected and that statistical
errors are less than & 1%.
The comparison with our FMT for four different ori-

entations # with length-to-diameter ratio L=D ¼ 2:5
[Fig. 2(a)] reveals a very good agreement with 	 ¼ 5

4 and

	 ¼ 1:6, while the former FMT with 	 ¼ 0 performs
somewhat worse. In particular, the wavelength of the os-

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

FMT, = 1.6

FMT, = 5
4

simulation data [15]

isotropic

nematic

FIG. 1. The isotropic-nematic transition of hard spherocylin-
ders (length L, diameter D, packing fraction 
) as obtained from
the FMT excess free energy density �, Eqs. (5) and (10), with
	 ¼ 5

4 and 	 ¼ 1:6. For comparison we show simulation data

obtained by Bolhuis and Frenkel [15]. The lower (upper) line or
symbol indicates the density of the isotropic (nematic) phase at
coexistence. At moderate aspect ratios the density gap is too
small to be resolved in the simulations. For elongated rods the
FMT underestimates the difference between coexisting densities.
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cillations is very well captured. At L=D ¼ 5:0 (not shown)
the deviations for 	 ¼ 0 become more pronounced, and a
slightly better description with 	 ¼ 5

4 is provided compared

to 	 ¼ 1:6. The data with L=D ¼ 10:0 [Fig. 2(b)] clearly
reveal the failure of 	 ¼ 0, which grossly overestimates the
density profiles with low # while it systematically under-
estimates the density of the spherocylinders with large #.
While 	 ¼ 1:6 also over- and underestimates the data for
the orientations, the value 	 ¼ 5

4 always gives a very accu-

rate description of the data over the whole range of
distances from the wall and for all spherocylinder orienta-
tions. This agreement is particularly encouraging as 	 ¼ 5

4

is precisely the value which was obtained from the require-
ment that the isotropic low-density bulk fluid is optimally
described. Apparently the suitability of the value 	 ¼ 5

4 for

the isotropic fluid survives beyond the low-density limit
and in the inhomogeneous fluid. Note that underestimating
the contact density in a certain range of # must go in hand
with overestimating it in another range of #. This is a
consequence of the contact theorem for fluids at hard walls
[4] which states that the pressure is obtained as p ¼
kBT

P
�
j¼1 �

c
j , where �c

j is the density of orientation #j at

contact with the hard wall. As the bulk pressure p does not
depend on 	 , the sum

P
�
j¼1 �

c
j always yields the same

result.
Based on a deconvolution of the Mayer f-function for

nonspherical convex bodies, we derived a FMT free energy
functional for general inhomogeneous hard-particle fluids
by the introduction of two tensorial weight functions. The
virtues of the new theory are apparent: it yields a stable
nematic phase for the hard-spherocylinder fluid—an essen-
tial feature of fluids of nonspherical particles which was
completely missed by the previous FMT [6]. Our theory is
open for systematic extensions by the use of tensorial
weighted densities with higher rank, which lead to better
agreement with the Onsager limit. Obviously, it would be
interesting to apply the present FMT to other phases, e.g.,
smectic and crystalline phases such as the gyroid cubic
phase of hard pear-shaped particles [17] or the simple
monoclinic phase of hard ellipsoids of revolution [18]
which have been discovered recently in numerical simula-
tions. Nonspherical particle fluids also provide an impor-
tant testing ground for morphological thermodynamics,
which is based on Hadwiger’s theorem from integral ge-
ometry, allowing for an efficient calculation of free ener-
gies of fluids in contact with complexly shaped walls [19].
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FIG. 2. Density profiles �#ðzÞ from Monte Carlo simulations
(open circles) and from minimization of the density functionals
(	 ¼ 0, dashed-dotted lines; 	 ¼ 1:6, dashed lines; 	 ¼ 5

4 , solid

lines) for a fluid of hard spherocylinders at a hard planar wall
located at z ¼ 0. The length-to-diameter ratio and bulk packing
fraction are (a) L=D ¼ 2:5, 
 ’ 0:346 and (b) L=D ¼ 10:0, 
 ’
0:127.

PRL 102, 018302 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

9 JANUARY 2009

018302-4


