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We study the magnetic interactions in Mott-Hubbard systems with partially filled t2g levels and with

strong spin-orbit coupling. The latter entangles the spin and orbital spaces, and leads to a rich variety of

the low energy Hamiltonians that extrapolate from the Heisenberg to a quantum compass model

depending on the lattice geometry. This gives way to ‘‘engineer’’ in such Mott insulators an exactly

solvable spin model by Kitaev relevant for quantum computation. We, finally, explain ‘‘weak’’ ferro-

magnetism, with an anomalously large ferromagnetic moment, in Sr2IrO4.
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The transition metal compounds with partially filled
d-levels have been the subject of extensive studies after
the discovery of a variety of novel physical phenomena and
a diversity of new phases [1–3]. In the undoped com-
pounds, a strong Coulomb repulsion localizes the
d-electrons in Mott-Hubbard or charge-transfer insulating
regimes [4]. The low energy physics of such insulators, in
some cases, is described in terms of spin-only Hamil-
tonians. This happens when the symmetry of the local
surrounding of a transition metal (TM) ion is low enough
to lift the orbital degeneracy of a d-level as in the case of,
e.g., high-Tc cuprates. However, often, a TM ion possesses
an orbital degeneracy in addition to that of spin origin.
Typically, the orbitals form a long-range-ordered pattern,
driven by Jahn-Teller or exchange interactions, and, being
subject to a discrete symmetry, behave more like static
(classical) objects compared to their spin partners. Orbital
ordering may stabilize various types of magnetic phases
[5], as well as spin gapped states without any long-range
spin order [6,7]. In other circumstances, the situation can
be opposite: the orbitals may remain in a liquid state down
to the lowest temperatures, while the spins are slowly
fluctuating about a long-range-ordered state [8,9].

In this Letter, we discuss yet another situation, when a
strong relativistic spin-orbit (SO) coupling entangles lo-
cally the spin and orbital degrees of freedom. The physics
of such systems may drastically differ from that of com-
pounds where SO coupling is of a perturbative nature, as
the form of magnetic interactions is no longer dictated by a
global spin SUð2Þ symmetry alone. The effects of a strong
SO interaction on magnetic phenomena has been discussed
in the pioneering works by Kanamori on Fe2þ and Co2þ
compounds [10]. In recent years, there has been a revival of
interest in SO coupling in the context of exchange inter-
actions [11–13], magnetoelectric [14] and spin Hall effects
[15], Fermi-surface topology [16], etc.

The SO coupling is strong for the late TM ions such as Ir,
Os, Rh, Ru. Indeed, optical data on Ir4þ impurities in
SrTiO3 suggest a fairly high value of the SO coupling ��
380 meV [17]. This far exceeds possible intersite interac-

tions between the t2g orbitals and spins in the insulating

iridates, and hence is able to lock them together forming a
total angular momentum locally. In the following, we focus
on the systems composed of magnetic ions with a single
hole in a threefold degenerate t2g-level, a low spin state of

d5-configuration, such as Ir4þ or Rh4þ ions in a strong
octahedral field. We formulate a superexchange theory for
such systems and show that together with conventional
interactions of Heisenberg form, more exotic spin models
such as the quantum compass model naturally appear as
low energy Hamiltonians. We suggest how to implement in
such Mott insulators an exactly solvable model proposed
by Kitaev [18], which exhibit exotic anyonic excitations
with fractional statistics. We apply the present theory to the
insulating iridium compound Sr2IrO4 [19–22] exhibiting
‘‘weak’’ ferromagnetism (FM) with an anomalously large
FM moment.
Single ion Kramers doublet.—We first introduce the

local magnetic degrees of freedom. In the low spin d5

configuration a hole resides in t2g manifold of xy, xz, yz

orbitals, and has an effective angular momentum l ¼ 1
[23]: jlz ¼ 0i � jxyi, jlz ¼ �1i � � 1ffiffi

2
p ðijxzi � jyziÞ.

The total moment ~M ¼ 2~s� ~l, where ~s is a hole spin

operator. The single ion Hamiltonian H0 ¼ �~l � ~sþ�l2z
consists of a SO coupling with � > 0 and a possible
tetragonal splitting� of the t2g levels.�> 0 for an oxygen

octahedron elongated along the z k c-axis. The lowest
energy level of H0 is a Kramers doublet of isospin states

j~"i and j~#i:
j~"i ¼ sin�j0; "i � cos�j þ 1; #i;
j~#i ¼ sin�j0; #i � cos�j � 1; "i:

(1)

Angle � parameterizes the relative strength of the tetrago-

nal splitting, with tanð2�Þ ¼ 2
ffiffiffi
2

p
�=ð�� 2�Þ. Notice that

the wave functions of the Kramers doublet are given by a
coherent superposition of different orbital and spin states,
leading to a peculiar distribution of spin densities in real
space (see Fig. 1). This will have important consequences
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for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when � is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (� ¼ 0,

sin� ¼ 1=
ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180�-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90�-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180� bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space

and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si � ~Sj þ J2ð ~Si � ~rijÞð~rij � ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the

ij bond, and J1ð2Þ ¼ 4
9�1ð2Þ. Hereafter, we use the energy

scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters �1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
�1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and �2 ¼ ðr1 � r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio � ¼ JH=U of
Hund’s coupling and U [24]. At small �, one has �1 ’ 1
and �2 ’ �=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small �, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
� while the Hund’s coupling is not essential.
(B) A 90� bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90� bond leads to an exchange
Hamiltonian drastically different from that of a 180� ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the ��
plane perpendicular to the �ð¼ x; y; zÞ axis by a (�)-bond.
With this in mind, the Hamiltonian can be written as

H ð�Þ
ij ¼ �JS�i S

�
j ; (3)

with J ¼ 4
3�2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyzi þ ijxziÞ state, lz ¼ 1 (right).
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180�-bond formed by corner-shared octahedra, and (b) a
90�-bond formed by edge-shared octahedra.
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tional statistics, topological degeneracy, and, in particular,
it is relevant for quantum computation [18]. This generated
an enormous interest in a possible realization of this model
in real systems, with current proposals based on optical
lattices [27]. Here, we outline how to ‘‘engineer’’ the
Kitaev model in Mott insulators.

Shown in Fig. 3(a) is a triangular unit formed by 90�
bonds together with ‘‘compass’’ interactions that follow
from Eq. (3). Such a structure is common for a number of
oxides, e.g., layered compounds ABO2 (where A and B are
alkali and TM ions, respectively). The triangular lattice of
magnetic ions in an ABO2 structure can be depleted down
to a honeycomb lattice (by periodic replacements of TM
ions with nonmagnetic ones). One then obtains an A2BO3

compound, which has a hexagonal unit shown in Fig. 3(b).
There are three nonequivalent bonds, each being perpen-
dicular to one of the cubic axes x, y, z. Then, according to
Eq. (3), the spin coupling, e.g., on a (x)-bond, is of Sxi S

x
j

type, precisely as in the Kitaev model. The honeycomb
lattice provides a particularly striking example of new
physics introduced by strong SO coupling: the
Heisenberg model is converted into the Kitaev model
with a spin-liquid ground state.

The compound Li2RuO3 [28] represents a physical ex-
ample of the A2BO3 structure. By replacement of spin-one
Ru4þ with spin-one-half Ir4þ ions, one may realize a
strongly spin-orbit-coupledMott insulator with low-energy
physics described by the Kitaev model.

‘‘Weak’’ ferromagnetism of Sr2IrO4.—As an example of
a spin-orbit-coupled Mott insulator, we discuss the layered
compound Sr2IrO4, a t2g analog of the undoped high-Tc

cuprate La2CuO4. In Sr2IrO4, a square lattice of Ir
4þ ions is

formed by corner-shared IrO6 octahedra, elongated along
the c-axis and rotated about it by � ’ 11� [19] (see Fig. 4).
Sr2IrO4 undergoes a magnetic transition at �240 K dis-

playing a weak FM, which can be ascribed to a
Dzyaloshinsky-Moriya (DM) interaction. The puzzling
fact is that ‘‘weak’’ FM moment is unusually large,
’ 0:14�B [20] which is 2 orders of magnitude larger
than that in La2CuO4 [29]. A corresponding spin canting
angle 	 ’ 8� is close to �, i.e., the ordered spins seem to
rigidly follow the staggered rotations of octahedra. Here,
we show that the strong SO coupling scenario gives a
natural explanation of this observation.
We first show the dominant part of the Hamiltonian for

Sr2IrO4 neglecting the Hund’s coupling for a moment.
Accounting for the rotations of IrO6 octahedra, we find

H ¼ J ~Si � ~Sj þ JzS
z
iS

z
j þ ~D � ½ ~Si � ~Sj�: (4)

Here, the isotropic coupling J ¼ �1ðt2s � t2aÞ, where ts ¼
sin2�þ 1

2 cos
2� cos2�, and ta ¼ 1

2 cos
2� sin2�. The second

and third terms describe the symmetric and DM anisotro-

pies, with Jz ¼ 2�1t
2
a, ~D ¼ ð0; 0;�DÞ, and D ¼ 2�1tsta.

[For � ¼ 0, these terms vanish and we recover J1-term of
the 180� result (2).] As it follows from Eq. (4), the spin
canting angle is given by a ratio D=J ’ 2ta=ts � 2�which
is independent of �, and is solely determined by lattice
distortions. This explains the large spin canting angle 	�
� in Sr2IrO4.
As in the case of weak SO coupling [30], the

Hamiltonian (4) can in fact be mapped to the Heisenberg

model ~~Si � ~~Sj where operators ~~S are obtained by a stag-

gered rotation of ~S around the z-axis by an angle�	, with
tanð2	Þ ¼ D=J. Thus, at JH ¼ 0, there is no true magnetic
anisotropy. Once JH-corrections are included, the
Hamiltonian receives also the anisotropic terms,

S
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FIG. 3 (color online). Examples of the structural units formed
by 90� TM-O-TM bonds and corresponding spin-coupling pat-
terns. Gray circles stand for magnetic ions, and small open
circles denote oxygen sites. (a) Triangular unit cell of
ABO2-type layered compounds, periodic sequence of this unit
forms a triangular lattice of magnetic ions. The model (3) on this
structure is a realization of a quantum compass model on a
triangular lattice: e.g., on a bond 1-2, laying perpendicular to
x-axis, the interaction is Sx1S

x
2. (b) Hexagonal unit cell of

A2BO3-type layered compound, in which magnetic ions
(B-sites) form a honeycomb lattice. (Black dot: nonmagnetic
A-site). On an xx-bond, the interaction is Sxi S

x
j , etc. For this

structure, the model (3) is identical to the Kitaev model.
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FIG. 4. The spin canting angle 	 (in units of �) as a function
of the tetragonal distortion parameter �. Inset shows a sketch of
an IrO2-plane. The oxygen octahedra are rotated by an angle��
about z-axis forming a two sublattice structure. In the cubic case,
� ’ 
=5, one has 	 ¼ � exactly. The spin-flop transition from
the in-plane canted spin state to a collinear Néel ordering along
z-axis occurs at � ¼ 
=4.

PRL 102, 017205 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

9 JANUARY 2009

017205-3



~H ¼ ~J ~~Si � ~~Sj � �1
~Szi
~Szj � �2ð~Sxi ~Sxj � ~Syi

~SyjÞ; (5)

where ~J ¼ �1ðt2s þ t2aÞ þ �1, �1 ¼ �2cos
2� cos2�, �2 ¼

�2sin
2�cos2�, and a � sign is taken for a bond along

xðyÞ-axis. This Hamiltonian supports two types of spin
orderings (see Fig. 4). For �1 > 0, the spins form a canted
structure in xy-plane. We find the out-of-plane magnon gap

/
ffiffiffiffiffiffiffiffi
~J�1

q
of a classical origin, and much smaller in-plane

gap / �2 generated by quantum fluctuations.
Figure 4 shows the spin canting angle 	 (in units of �)

as a function of tetragonal distortion. In the cubic limit, we
find 	 � �; i.e., the spins simply rotate together with the
IrO6 octahedra. This suggests a strong magnetoelastic
coupling in Sr2IrO4, and related phonon anomalies at the
magnetic transition. The elongation c > a (compression
c < a) of octahedra leads to a decrease (increase) of	 and
hence FM moment. At large c=a ratio, �1 changes sign.
This marks a spin-flop transition to collinear order along
the z-axis, which happens at � ¼ 
=4, i.e., � ¼ �=2. This
gives an upper estimate for the tetragonal splitting �<
�=2 ’ 190 meV in Sr2IrO4, which agrees with optical data
[21,22]. Further, in the cubic limit, we find �1=~J ’ 0:04,
which is much larger than that in La2CuO4, and far exceeds
possible interlayer interactions [31]. This suggests that
XY-anisotropy is chiefly responsible for finite transition
temperature in Sr2IrO4. From experimental value TN ¼
240 K, we estimate ~J ’ 45 meV [32], which is a realistic
value for a t2g-system [12].

We focused above on the Mott insulators [4], where the
energy �pd for a charge transfer from an oxygen to a TM

ion is larger than U. Optical data show that the p-d
transitions in Sr2IrO4 are indeed located at much higher
energy than d-d ones [21,22]. We, therefore, neglected the
processes with two holes on the oxygen sites [33].

To conclude, we have considered magnetic interactions
in Mott insulators with strong spin-orbit coupling. We find
that the symmetry of low-energy Hamiltonians is dictated
by lattice geometry, opening a possibility to design exotic
spin models like quantum compass and Kitaev models.
Magnetic properties of the iridate Sr2IrO4 are explained.
In general, spin-orbit coupled Mott insulators present an
interesting new class of frustrated systems where the orbi-
tal, spin, and geometrical frustrations are superimposed via
the spin-orbital entanglement, giving rise to unusual sym-
metries of interactions.
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