
Evolution of a Large Fermi Surface in the Kondo Lattice

Junya Otsuki,1 Hiroaki Kusunose,2 and Yoshio Kuramoto1

1Department of Physics, Tohoku University, Sendai 980-8578, Japan
2Department of Physics, Ehime University, Matsuyama 790-8577, Japan

(Received 31 July 2008; published 5 January 2009)

The single-particle spectrum of the Kondo lattice model is derived with the use of the continuous-time

quantum Monte Carlo method, combined with the dynamical mean-field theory. Crossover behavior is

traced quantitatively either to a heavy Fermi-liquid state or to a magnetically ordered state from the local-

moment state at high temperatures. The momentum distribution in the low-temperature limit acquires a

discontinuity at the location that involves the local-spin degrees of freedom. Even without the charge

degrees of freedom for local electrons, the excitation spectra exhibit hybridized bands similar to those in

the Anderson lattice. Temperature dependence in the zero-energy component of the self-energy is crucial

in forming the Fermi-liquid state with the large Fermi surface.
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A long-standing problem in condensed matter physics is
how to resolve the dichotomy between localized and itin-
erant characters of electrons in solids. For many metals
with f electrons, and also some with d electrons, the strong
Coulomb repulsion between localized electrons suppresses
charge fluctuations at each site, leaving only a spin and/or
an orbital degree of freedom. These localized degrees of
freedom interact with conduction electrons, which are
delocalized over the entire crystal. The itinerant and local-
ized electrons affect each other and realize rich physical
phenomena such as heavy electrons.

The simplest model to describe the situation is the
Kondo lattice model (KLM) given by

H ¼ X
k�

�kc
y
k�ck� þ J

X
i

Si � �i: (1)

Here Si represents the localized spin of the valence elec-

tron at the i site, and �i ¼ P
��0cyi����0ci�0 is the spin

operator of the itinerant conduction electron. The antifer-
romagnetic exchange interaction J > 0 under realistic con-
ditions is much smaller than the bandwidth, and each
localized spin acts as a weak scatterer for the conduction
electrons at high temperatures. As temperature decreases,
interactions between the localized spins become signifi-
cant, which are mediated by conduction electrons, and a
magnetic long-range order may be realized. On the other
hand, the localized spins also tend to be quenched by
conduction electrons, which is called the Kondo effect. If
the system remains paramagnetic, coherent quasiparticles
may emerge by the collective Kondo effect. Although the
overall picture [1] mentioned above is widely accepted, the
rich crossover phenomena due to emergent quasiparticles
remain highly nontrivial [2].

The KLM has no apparent counterpart of a noninteract-
ing system, since the perturbation series with respect to J is
essentially singular at J ¼ 0. Accordingly, we have no
clear starting point to study the nature of the paramagnetic

ground state in the KLM. On the other hand, an ordinary
Fermi-liquid argument is applicable to the Anderson lat-
tice, since the adiabatically continued noninteracting
ground state is evident [3]. A clue for characterizing the
KLM is Luttinger’s theorem which relates the volume of
the Fermi surface with the number of electrons [4]. A
version of the proof [5] of this theorem states that the
volume of the Fermi surface is the same as that in the
Anderson lattice (the so-called ‘‘large Fermi surface’’)
with unit occupation of each local state. The proof is valid
provided that the ground state of the KLM is a Fermi
liquid. However, it is not trivial whether this condition is
satisfied. In fact, another possibility of a ‘‘small’’ Fermi
surface has also been proposed [6–8] with inclusion of
explicit coupling between local spins.
Because of the difficulty in including higher-order ef-

fects of J, the KLM has been studied either by variants of
the mean-field theory [7,9,10] or in one-dimensional sys-
tems [11–13]. In the mean-field theory, the collective
Kondo effect appears as a phase transition, and it is difficult
to reproduce the Kondo crossover at finite temperatures. As
a particular feature in one dimension, on the other hand, the
low-energy excitations behave as in a Tomonaga-Luttinger
liquid without discontinuity in the momentum distribution.
Furthermore, a magnetic long-range order, which com-
petes with the paramagnetic state, is strongly suppressed.
Thus it is highly desirable to obtain reliable information in
higher dimensions, especially the temperature-dependent
evolution of the collective Kondo effect.
In this Letter, we report results which become exact in

the limit of infinite dimensions. First, evolution of the
Landau quasiparticles is traced quantitatively from the
local-moment regime at high temperatures. Second, a
magnetic phase diagram of the KLM is derived. The peri-
odic lattice effect is dealt with by the dynamical mean-field
theory (DMFT) [14]. To solve the effective impurity prob-
lem in the DMFT, we use the continuous-time quantum
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Monte Carlo (CT-QMC) algorithm [15,16], adapted to the
Kondo model [17]. Since no approximation such as dis-
cretization is involved in the CT-QMC algorithm, and since
the simulation does not encounter the minus sign problem,
the effective impurity problem can be solved with desired
accuracy.

Model and method.—Let us start with the conduction-
electron Green function in the KLM:

Gcðk; i�nÞ ¼ ½i�n � �k þ���cði�nÞ��1; (2)

where �n ¼ ð2nþ 1Þ�T is the fermionic Matsubara fre-
quency. The self-energy �cði�nÞ takes account of nonper-
turbative contributions from the localized spins, but the
momentum dependence has been neglected according to
the DMFT. The KLM is then mapped to the impurity
Kondo model in the effective medium, which is character-
ized by the cavity Green function G0

cði�nÞ. The impurity
self-energy �cði�nÞ should be identical with that in Eq. (2)
and is given in terms of the impurity t matrix tði�nÞ as
�cði�nÞ�1 ¼ tði�nÞ�1 þG0

cði�nÞ. Here G0
cði�nÞ is deter-

mined from the local Green function �Gcði�nÞ of the lattice
system via G0

cði�nÞ�1 ¼ �Gcði�nÞ�1 þ �cði�nÞ.
We adopt a nearest-neighbor tight-binding model in the

infinite-dimensional hypercubic lattice [18], which is char-

acterized by the Gaussian density of states: �cð!Þ ¼
D�1

ffiffiffiffiffiffiffiffiffi
2=�

p
expð�2!2=D2Þ. We take D ¼ 1 as the unit of

energy and fix the conduction-electron density per site as
nc ¼ 0:9 throughout this Letter. The latter choice favors
antiferromagnetism by the nearly nesting condition. We
use 107 QMC samples at most with 10–100 intervals. The
DMFT self-consistent equations converge typically within
10 iterations.

Phase diagram.—We first show the J-T phase diagram
in Fig. 1. The antiferromagnetic transition temperature TAF

is determined by the divergence of the staggered magnetic
susceptibility, which can be computed in terms of the
Bethe-Salpeter equation with numerically derived local
vertices [14,19]. Here we have neglected possible incom-

mensurate order for simplicity, since our main interest in
this Letter lies in the paramagnetic phase. The overall
structure of the phase diagram is understood by competi-
tion between the Kondo effect and the RKKY interaction
[1]. As J increases (T decreases) in the paramagnetic
phase, the localized moments gradually disappear, and
the Fermi-liquid behavior dominates below the coherent
energy scale T�. The intensity map in Fig. 1 represents the
degree of itinerancy in terms of the parameter �, whose
definition is given later in Eq. (6). We will show that the
Fermi liquid is indeed realized for J > Jc ’ 0:2 at low
temperatures. The crossover region in temperature be-
comes narrower near the quantum critical point, Jc.
Single-particle spectra.—In the DMFT, k dependence

of the Green function enters only through �k. Therefore
Gcðk; i�nÞ is regarded as a function of � ¼ �k and is
written as

Gcð�; i�nÞ ¼ ½i�n � �þ���cði�nÞ��1: (3)

The single-particle excitation spectrum Að�;!Þ ¼
�ImGcð�;!þ i0Þ=� is obtained by means of the Padé
approximation [20]. The validity of the Padé approxima-
tion has been confirmed for the impurity Kondo-type mod-
els [17]. Our QMC data have accuracy high enough to
obtain reliable real-frequency spectra.
Figure 2 shows the single-particle excitation spectra for

a fixed value of J ¼ 0:3. We define two energies �L and �S

corresponding to the large and small Fermi surfaces, re-
spectively. The upper panel shows Að�;!Þ for T ¼ 0:25.
The spectrum exhibits a behavior of almost noninteracting
electrons at high energies. However, the coupling with spin
fluctuations gives rise to a pseudogap near the small Fermi
surface �S.
The lower panel shows the spectrum at T ¼ 0:0025,

which is much lower than the impurity Kondo temperature

defined by TK ¼ ffiffiffi
g

p
e�1=g � 0:1, with g ¼ 2J�cð0Þ. The

pseudogap looks like a true gap, and the coherent quasi-
particles develop near the gap edges. This structure has a
close resemblance to the hybridized band in the Anderson
lattice. In particular, the width of the pseudogap is the order
of the Kondo temperature TK � 0:1. The quasiparticle
intensity becomes sharper near the Fermi energy, and the
quasiparticle band crosses the Fermi energy exactly at �L.
Namely, the localized spins do contribute to the Fermi
volume.
Evolution of the Fermi liquid.—Let us characterize the

Green function near the Fermi surface. We expand the self-
energy in powers of i�n to obtain

Gcð�; i�nÞ ’ z

i�n � z½���þ �cð0Þ� ; (4)

where the renormalization factor z is given by

z ¼
�
1� @Im�cði�nÞ

@�n

���������n!þ0

��1
: (5)

From the QMC data, we have confirmed numerically the
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FIG. 1 (color). The phase diagram of the KLM at nc ¼ 0:9.
The intensity map represents � defined by Eq. (6), and the
coherent energy scale T� is defined by � ¼ 0:5.
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Fermi-liquid conditions @Re�cði�nÞ=@�n ! 0 and
Im�cði�nÞ ! 0 in the limit �n ! 0, which means T ! 0.
As a result, we obtain z ’ 0:084 for J ¼ 0:3. We extrapo-
late Re�cð0Þ from the QMC data of Re�cði�nÞ for small
jnj, assuming a quadratic function centered at �n ¼ 0.

We now demonstrate the evolution of the Fermi-liquid
state with the large Fermi surface as a function of tempera-
ture. The Fermi surface appears at such momentum that
satisfies �k ¼ �� �cð0Þ. Figure 3 shows temperature de-
pendences of�� Re�cð0Þ and� for J ¼ 0:2, 0.3, and 0.4.
There are apparently two regimes in temperature. At high
temperature, the self-energy correction is not important,
and thermal excitations occur around �� �S. At low
temperature, on the other hand, �� Re�cð0Þ deviates
significantly from � and gives rise to the large Fermi
surface at �L. From this observation, �� Re�cð0Þ turns
out to be a good measure to characterize the crossover
between the local-moment regime and the Fermi-liquid
state. We introduce a dimensionless quantity

� ¼ ½�� Re�cð0Þ � �L�=ð�S � �LÞ; (6)

which ranges from 0 to 1 for T � D. The limit � ¼ 0
represents the Fermi-liquid state with the large Fermi
surface, and the other limit � ¼ 1 represents almost non-
interacting conduction electrons. We define the crossover

temperature T� by the condition � ¼ 0:5 as shown in
Fig. 1. At J ¼ 0:3, for example, we obtain T� ’ 0:035,
which is smaller than TK � 0:1.
For the one-dimensional KLM, the existence of two

different energy scales has already been discussed in the
literature [21]. The uniform charge susceptibility �cðTÞ,
for example, takes a maximum around TK and decreases
with decreasing temperature due to the development of the
pseudogap. With a further decrease of temperature, �cðTÞ
turns to increase reflecting the contribution of coherent
excitations, and it saturates to a finite value. For the
infinite-dimensional KLM, our results of the uniform
charge susceptibility, which will be reported elsewhere,
show similar behavior with that in one dimension. The
distinct energy scales without phase transitions are impor-
tant to analyze experimental data properly.
We note the difference between the present description

in Eq. (4) and the ordinary Fermi-liquid state in the
Anderson lattice [3]. In the Anderson lattice, the localized
electrons which are practically immobile at high tempera-
tures eventually become itinerant. Thus, the major compo-
nent of the quasiparticle is the localized electron. On the
contrary, the local spins in the KLM remain absolutely
immobile although the Fermi surface becomes large. At
high temperatures, the conduction electrons interact inco-
herently with local-spin fluctuations. At low temperatures
and energies, the conduction electrons manage to form
coherent quasiparticles which accompany the polarization
cloud of spin fluctuations. These quasiparticles exhibit the
heavy-fermion behavior. In particular, the origin of the
large linear specific heat is the entropy of the local spins
as in the Anderson lattice. The spin entropy changes in the
temperature scale of TK.
Momentum distribution.—We now discuss the momen-

tum distribution of conduction electrons:

hcyk�ck�i ¼ T
X
n

Gcð�; i�nÞei�n0þ � ncð�Þ: (7)
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FIG. 3. Temperature dependences of the chemical potential �
and its self-energy correction �� Re�cð0Þ for nc ¼ 0:9.

FIG. 2 (color). The single-particle excitation spectrum Að�;!Þ
for J ¼ 0:3 and nc ¼ 0:9 at (a) T ¼ 0:25 and (b) T ¼ 0:0025.
The slanted line represents the noninteracting spectrum ! ¼
��� which is realized with J ¼ 0.
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Figure 4 shows ncð�Þ in the Fermi-liquid state T � T�.
The gradient of ncð�Þ at � ¼ �L becomes steep with
decreasing temperature, indicating the existence of discon-
tinuity at T ¼ 0. The magnitude of the discontinuity is
consistent with z ’ 0:084 estimated from �cði�nÞ. On the
other hand, ncð�Þ at �S is almost independent of T in the
Fermi-liquid state. For characterization of the momentum
distribution at finite temperature, we introduce the energy
scales (	 ¼ L; S):

T	 ¼ 1

4

�
� @ncð�Þ

@�

���������¼�	

��1
(8)

at �L and �S. In the Fermi-liquid state with the approxi-
mate Green function [Eq. (4)], TL should behave as T=z2.
The inset in Fig. 4 shows the temperature dependences of
T	. The linear-T dependence in TL ’ T=z2 at temperatures

lower than T� ( ’ 0:035 for J ¼ 0:3) verifies the existence
of the discontinuity at T ¼ 0 and ensures the validity of the
quasiparticle expansion in Eq. (4). At temperatures higher
than TK, on the other hand, �L loses its importance.
Instead, thermal excitations are populated around �� �S

which develops according to TS ’ T.
We have thus established the Fermi-liquid state of the

KLM in infinite dimensions. On the basis of Luttinger’s
theorem, we may further develop a phenomenological
Fermi-liquid theory in the vicinity of the large Fermi
surface. Note that the Fermi-liquid state realized in the
KLM has no explicit counterpart of a noninteracting sys-
tem. This situation is identical to the local Fermi-liquid
theory by Nozières in the single-impurity Kondo model
[22], where the phase shift of conduction electrons is a key
quantity. Following a similar strategy, an extension should
be possible starting from the large Fermi surface in the
three-dimensional KLM. Investigation of possible super-

conductivity is also a challenging issue in extending the
present infinite-dimensional theory for the KLM.
In summary, we have demonstrated the temperature-

dependent evolution of the Fermi-liquid state with the large
Fermi surface. Our numerical results in the low-
temperature limit confirm the premise for Luttinger’s theo-
rem that relies on the Fermi-liquid character of low-energy
excitations [5].
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FIG. 4 (color online). Momentum distribution ncð�Þ for J ¼
0:3 and nc ¼ 0:9. The vicinity of the large Fermi surface is
enlarged in the left inset. The right inset shows the temperature
dependences of the ‘‘width’’ of ncð�Þ at � ¼ �S and �L.
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