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Motivated by the recent report of broken time-reversal symmetry and zero momentum magnetic

scattering in underdoped cuprates, we investigate under which circumstances orbital currents circulating

inside a unit cell might be stabilized in extended Hubbard models that explicitly include oxygen orbitals.

Using Gutzwiller projected variational wave functions that treat on an equal footing all instabilities, we

show that orbital currents indeed develop on finite clusters and that they are stabilized in the thermody-

namic limit if additional interactions, e.g., strong hybridization with apical oxygens, are included in the

model.
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Despite intensive efforts in the past 20 years, the physics
of high-Tc superconductors remains largely mysterious [1].
This is especially true of the pseudogap phase of under-
doped cuprates, for which various explanations have been
put forward ranging from preformed superconducting pairs
[2] to the existence of orbital currents (OCs) with [3] or
without [4,5] broken translational symmetry. The latter
case has received considerable attention due, on one
hand, to recent neutron experiments [6] indicating the
presence of magnetic moments, compatible with the
translation-invariant pattern of currents predicted by
Simon and Varma [4] and, on the other hand, to Kerr effect
measurements [7] showing evidence of time-reversal sym-
metry breaking. Current (flux) phases have been first pro-
posed for the single-band Hubbard model [2,8–10] but
have been found unstable by slave bosons and numerical
calculations. Interestingly, OCs were also found to be
relevant in a two-band system [11]. In ladder models,
where the existence of such phases can be checked in a
more controlled way, it was found that somewhat special
interactions, more complex than local ones, are needed to
stabilize them [12,13]. The resulting phases break the
translational symmetry of the lattice, leading to a staggered
flux pattern. Similar staggered patterns were advocated as a
potential explanation of the pseudogap phase [3]
[d-density wave (DDW) phase]. To stabilize flux phases
that do not break the translational symmetry, it seems
worthwhile to go beyond the single-band Hubbard model
and to consider the so-called three-band Hubbard model in
which oxygen orbitals are explicitly taken into account.
This model has been tested for superconducting instabil-
ities early on, pointing to some differences with the single-
band model [14]. Fluctuation exchange analysis on the
two-dimensional system showed no sign of instability to
staggered flux phases [15]. The one-dimensional (ladder)
case has first been investigated at half filling, when the
system is essentially an insulator [16]. More recently, a low

energy analysis for the three-band model on a ladder has
been performed and showed that in a certain range of
doping flux phases were indeed stabilized [17]. These
phases exhibit a 2kF staggered order parameter, quite
natural in one dimension, for the currents, but with a
symmetry different from that of the DDW. In two dimen-
sions, a mean-field analysis [4] of the three-band model has
suggested the existence of translationally invariant current
patterns when the Cu-O nearest-neighbor repulsion is
strong enough. This result has not been confirmed by exact
diagonalizations [18,19] on small clusters of an effective
t-J model. However, the mapping of the three-band
Hubbard model on this t-J model can be justified only in
the limit of very large oxygen on-site energy, a situation
not realized in the cuprates [20]. Moreover, because of the
three atoms per unit cell, the exact diagonalizations have
been performed for clusters with only a few unit cells, and
the relevance of the results for the thermodynamic limit is
far from guaranteed, in particular, because the filling that
was considered on this small cluster x ¼ 12:5% is leading
to a polarized ground state with finite momentum, which is
not representative of the physics on large scales. Therefore,
further investigations of the three-band Hubbard model are
clearly called for.
In this Letter, we perform a variational Monte Carlo

(VMC) investigation of the three-band Hubbard model
based on a Gutzwiller projected wave function that allows
for the possibility of OCs. This provides a method free
from numerical limitations even for large system sizes, for
which current instabilities are treated on an equal footing
with other instabilities.
We find that, on intermediate system sizes, a flux phase

circulating between copper and oxygens is stabilized. This
phase has the same symmetry (�2; see Fig. 1) as the phase
found in the mean-field solution [4]. Other symmetries or
phases that break the translational symmetry are much
higher in energy. However, as the system size gets larger,
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the energy gain decreases strongly, making it unclear
whether such a phase would survive in the thermodynamic
limit. We then propose modifications of the Hamiltonian
that take into account apical oxygens or three-body terms
and which strongly stabilize such current patterns. The
initial three-band model is defined by the Hamiltonian:

H ¼ X

ði;jÞ�
ðti;jcyi�cj� þ H:c:Þ þ X

�¼p;d

U�n̂�"n̂�#

þ �p

X

p;�

n̂p� þ Vdp

X

d;p

n̂dn̂p; (1)

where the sum over couples ði; jÞ runs over nearest Cu-O
neighbor pairs and next-nearest O-O neighbor pairs and c
stands for p or d orbitals depending on the site; ti;j stand

for the hopping matrix elements of magnitude tdp and tpp,

respectively, for Cu-O and O-O matrix elements. �p, Ud,

Up, and Vdp denote the atomic energy of the O-p orbitals,

the on-site repulsions in the Cu-d and O-p orbitals, and the
nearest-neighbor repulsion between Cu-d and O-p orbitals,
respectively. A realistic set of parameters found by local-
density approximation (LDA) calculations [20–22] is
Ud ¼ 10:5 eV andUp ¼ 4 eV, jtdpj ¼ 1:3 eV and jtppj ¼
0:65 eV, �p ¼ 3:5 eV, and Vdp ¼ 1:2 eV, and, unless

specified otherwise, these values are used in the following.
Note that we work in hole notations. The phase factor that
comes from the hybridization of the p-d orbitals gives to
the tij a nonhomogeneous sign. Around each copper atom,

there is one Cu-O-Cu plaquette with three minus signs.
Moreover, the product of the hopping signs around all of
the Cu-O-Cu plaquettes is �1 in hole notations.
Interestingly, a simple gauge transformation involving a
double copper unit cell leads to tij ¼ �jtijj.

This model has already been investigated with VMC
simulations [23,24], but the wave functions used did not
allow for current instabilities. By contrast, the wave func-
tion we consider throughout this work is constructed
from the ground state of the Hofstadter-like mean-field
Hamiltonian:

HMF ¼ X

ði;jÞ
tij�ije

i�ijcyi�cj� þ�var
p

X

p�

n̂p� þX

i

hiSi; (2)

where �ij > 0 and �ij, �
var
p , and hi are real variational

parameters. The local magnetic field hi allows one to
consider antiferromagnetism. The 16 variables �ij and

�ij are independent within one copper unit cell. To deal

with staggered order, we multiply a subset of the varia-
tional parameters by�1. When �ij � 0, the order parame-

ters are associated with an external flux which leads to the
circulation of the holes. In this case the Green function is

complex: hcyi cji ¼ jhcyi cjij expði�ijÞ. We treat the corre-

lations with a spin and charge Jastrow factor: J ¼
expðPi;j¼1;Nv

c
ji�jjninjÞ expð

P
i;j¼1;Nv

S
ji�jjS

z
i S

z
jÞ, where all

vc
ji�jj and vS

ji�jj are considered as free variational parame-

ters. We are mainly interested in the charge current ob-

servable. The conservation of the density �ni
�t ¼

0 ¼ @e
c ½H; ni� ¼

P
hi;jiJi;j leads to the current operator on

a link: Jij ¼
P

�tijjhcyi�cj�ij sinð�ijÞ. However, the current
conservation law is not satisfied by our variational ansatz
since it is not an exact eigenstate of (1). The mean-field

current, defined as JMF
ij

:¼ P
�tijj�ijjjhcyi�cj�ij sinð�ij þ

�ijÞ, is a conserved quantity, but, in general, J and JMF

need not be oriented in the same way. In particular, we find
that the O-O currents have different signs for J and JMF.
The phase ei�ij thus gives the direction of JMF but not the
direction of J, in general, which has to be computed
explicitly. In order to overcome this difficulty and to
impose the current conservation at each vertex of the
lattice, we apply on the wave function (wf) an additional
complex Jastrow factor [25]: J c ¼ expðPi¼1;Ni�iniÞ.
The kinetic energy of the extended wf is hTi ¼P

hi;j;�itijjhcyi�cj�ij cosð�ij þ �j � �iÞ. We emphasize

that the variables �i are, in general, not able to cancel
the flux �ij. The minimization of the variational parameters

introduced in (1) and in the real Jastrow is performed using
a stochastic minimization procedure [26,27] in which the
parameters of the uncorrelated part of the wf and the
Jastrow parameters are minimized at the same time. This
method allows one to deal with a large number of parame-
ters since the gradients are calculated all at the same time
during a simulation. The new parameters are then calcu-
lated using the obtained gradients, and the procedure is
iterated until convergence. At each step, the parameters
f�ig of the complex Jastrow are determined by finding the
ground state of a classical 2D XY spin model. Once our
wave function is optimized, we measure the physical ob-
servables, normalized by the number of copper atoms in
the lattice. To benchmark our wave function, we have
compared its properties with those obtained by exact diag-
onalizations for 10 holes on a small 8 copper lattice with
periodic boundary conditions (25% hole doping), with very
encouraging results (see Table I). Details will be presented
elsewhere [29].

FIG. 1 (color online). Energy of (a) the best orbital current wf
and of (b) the best spin-density wave wf. The reference was
taken as the projected Fermi sea (full Jastrow projector). Inset of
(a): The symmetry of the best current phase found (�2 pattern in
the notations of [4]). Although the OC phase is stable on an
intermediate size 16 copper lattice, the energy gain is strongly
reduced when the size increases. To the accuracy of the calcu-
lation, we did not find any energy optimization on a 100 Cu
lattice for the OC instability.
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We now turn to larger lattices, using open boundary
conditions to avoid the frustration of the �i variables. We
have performed calculations on lattices ranging from 16 to
64 copper sites. The gains in energy for the best antiferro-
magnetic [spin-density wave (SDW)] instability and for
flux phases are compared in Fig. 1 [30]. Note that these
orders are somewhat exclusive: Considering both simulta-
neously does not lead to any detectable gain in energy. At
zero doping we find that the Néel magnetic long-range
order is stabilized. By introducing doping, we considered
as a first approximation only the Q ¼ ð�;�Þ pitch vector
for the spin-density wave, even though the pitch vector is
most likely doping-dependent [31] or other instabilities
like stripes can occur [23]. Nevertheless, the long-range
correlations contained in the Jastrow factor allow for a
decent treatment of the spin correlations. Indeed, for our
best variational wave function, the magnetic order parame-

ter M ¼ limr!1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihSziSziþri

p Þ is � 60% of the classical
value. Using this wf as a guiding function for the fixed
node calculations, we find a slightly higher magnetic order
(62%). These values compare well with the 60% obtained
by quantum Monte Carlo calculations in the one-band
Heisenberg model [32]. Note that, in the three-band
Hubbard model, the magnetic instability is strongly depen-
dent on the O-O hopping integral tpp. Despite the good

agreement for the order parameter, our variational treat-
ment overestimates the magnetic instability, which disap-
pears only for 13% doping, instead of the experimentally
observed x ¼ 2% for the cuprates. VMC tends indeed to
overestimate the stability of SDW phases because the
alternating magnetization allows one to avoid double oc-
cupancy in the uncorrelated part of the wf, which on one
side costs kinetic energy but on the other side is better than

a pure local Gutzwiller projection that reduces the kinetic
energy much more dramatically.
Let us now turn to the current instability. On intermedi-

ate system sizes such as the 16 Cu lattice, we find that an
OC phase with a symmetry �2 (see the inset in Fig. 1) is
stabilized. Our wave function thus shows a tendency to flux
phase that does not exist in the corresponding one-band
model. However. the gain in energy strongly decreases as
the size increases and seems, within the accuracy of our
calculation, to vanish in the thermodynamic limit. Taken
literally, this suggests that the OC phase is not stable and
that the system has only short-range correlations. However,
we of course cannot rule out that some fine-tuning of the
parameters could stabilize this phase [33] or that the energy
gain would be much smaller than our statistical error. Two
points should be emphasized. First, regardless of the size of
the system, we find consistently that the �2 symmetry is
the one with the lowest variational energy. Other symme-
tries such as the �1 phase or the DDW patterns are un-
stable within our variational approach in the whole range of
doping. Second, varying the Cu-O interaction seems to
have no major effect on the stability of the current patterns,
in contrast with what one could have expected on the basis
of the mean-field solution [4]. As one can check from an
analysis of a model with only kinetic energy [29], the
relative sign of the transfer integrals around a loop is a
crucial parameter for an instability towards long-range
current correlations. Indeed, when the sign of tpp is re-

versed, J and JMF are oriented in the same direction, and
the current pattern is stable. For the model (1), the mean-
field approximation creates such a change of sign with the
correction to the bare tpd coming from the decoupling of

the Cu-O repulsion term [4], but the VMC study shows that
other terms in the decoupling seem to play an important
role as well. Given our VMC calculations for the three-
band Hubbard model of CuO2 planes and the experimental
evidence, it is natural to check if other terms not included
into this simple version of a multiband model could pro-
duce such an effect and stabilize orbital currents. One
obvious possibility is to include correlated hopping, as
already done successfully for the single-band Hubbard
model. This indeed leads to a strong increase of the ten-
dency to develop OCs [29]. Note, however, that the mag-
nitude of these terms is difficult to assess. A second and
interesting possibility is to generalize the model by includ-
ing apical oxygens. Indeed, the relative signs of the hop-
ping around purely oxygen plaquettes allow a priori for
orbital currents. We have thus repeated the calculation for
Cu-O layers including apical oxygens above and below
each Cu atom as well as the Cu-d3z2�r2 orbitals. The bare

parameters have been taken from the LDA [34] performed
with the crystal structure of the insulating parent com-
pound, and the analysis has been carried out as a function
of the distance between the copper and the apical oxygen,
modeled by a renormalization parameter � that multiplies
the hopping integrals involving the apical oxygens. As

TABLE I. Variational energies of the different wave functions
(wfs) compared with exact diagonalizations (Lanczos, first line)
on an 8-copper lattice with 10 holes and Sz ¼ 0. We show the
total energy (Etot), the kinetic energy of the Cu-O (Tdp) and of

the O-O links (Tpp), the on-site repulsion energy of the d (Ud)

and p (Up) orbitals, and the expectation values of the charge gap

operator (�p) and of the Coulomb repulsion between the d and p

orbitals (Vdp). The results obtained for a simple Jastrow wf (J),

by applying one Lanczos step (LS/J) and the fixed node approxi-
mation [28] on a simple Jastrow wf (FN/J), are also shown (the
calculation of the off-diagonal operators Tdp and Tpp within the

fixed-node approximation is more involved and is beyond the
scope of the present study). The comparison shows that our wf
captures quite well the low energy physics of the model. The
variance hðHNÞ2i � ðhHNiÞ2 of our best variational ansatz (LS/J) is

0.018.

wf Etot Tdp Tpp Ud Up �p Vdp

L �1:13821 �3:100 �0:796 0.267 0.083 1.775 0.632

J �1:0775ð1Þ �3:060 �0:830 0.261 0.081 1.834 0.640

LS/J �1:1153ð1Þ �3:140 �0:837 0.265 0.087 1.864 0.644

FN/J �1:1112ð5Þ 0.269 0.087 1.773 0.631
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expected from the signs of the hopping, a calculation with
x ¼ 0:125 hole doping confirms that orbital currents in-
volving the apical oxygen or the Cu-d3z2�r2 indeed develop

[35] according to the pattern of Fig. 2. These currents are
quite small for the bare values of the parameters, but they
acquire significant values when �> 1, with a steep in-
crease above � ¼ 1:4 [36]. Interestingly enough, the cur-
rent circulating in the px � pz � py plaquette leads to a

tilted moment, which would provide a natural explanation
for the out-of-plane moment that was observed in the
neutron experiments [6]. Whether the structural changes
induced by doping on the position of the apical oxygens
reported by some authors can produce the required renor-
malization of the hopping integrals remains to be seen [37].

After completion of this work, an experimental inves-
tigation of mercury compounds [38] has revealed a mag-
netic signal in the pseudogap phase which is compatible
with orbital currents including the apical oxygen, strength-
ening further the experimental relevance and interest of our
proposal. In parallel, a 	SR experiment [39] found no
evidence for broken time-reversal symmetry in lanthanum
compounds, suggesting that orbital currents are sensitive to
the details of the electronic structure, also in agreement
with the message of the present Letter.
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FIG. 2 (color online). Circulation of current around a px �
pz � py plaquette (triangles) and around a px � d3z2�r2 � py

plaquette (squares) measured in our best variational ansatz for
the eight-band Hubbard model. The phenomenological parame-
ter � renormalizes the amplitudes of the out-of-plane transfer
integrals. The symmetry of the OC pattern is �2 as follows:
There are (a) two out-of-plane current loops in the upper
pyramid and (b) two current loops in the Cu plane. Finally, the
current pattern in the lower pyramid (not shown) is obtained by a
horizontal mirror reflection of the upper pyramid. The calcula-
tions were done at x ¼ 0:125 hole doping, and with periodic
boundary conditions. Inset: Energies for both the SDW wf and
the circulating current (CC) ones showing the stabilization of the
CC phase for �> 1:2.
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