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A spin shift register is described. It is composed of a one-dimensional chain of N identical atoms which

each have an electronic spin state with S ¼ 1=2. When an additional electron is conducted down the chain,

it shifts the spin information by one atom. The spin shift register (SSR) can be used as a computer memory

device.
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A spin shift register is described [1]. It is composed of an
one-dimensional chain of N-identical atoms which each
have an electronic spin state with S ¼ 1=2. In the ground
state, each atom has one electron, and the electronic band is
half-full. In solving the Hubbard model, it is shown that
when an additional electron is conducted down the chain, it
shifts the spin states by one atom. This behavior acts as a
shift register.

There is much interest in spintronics: developing spin
states as computer memories and processors [2–4]. A shift
register is used as a computer memory, but has traditionally
been made from buckets of charge. Making a shift register
from a line of atoms reduces the spatial dimension by
1 order of magnitude.

For practical reasons, the line of spins would probably
be located on a surface. Recently, there has been much
progress in measuring and manipulating the properties of
spins chains on a surface [5–10]. The proposed shift regis-
ter could be constructed and tested using these new
techniques.

The atoms must have correlated electron states. They
must be from the transition-metal or rare-earth-metal se-
ries. Then the motion of electrons is described by the one-
dimensional Hubbard model [11]
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where t is the tight-binding hopping term, and U is the
onsite Coulomb energy. The summations are over j lattice
sites, � neighbors of j, and spin �. We make the usual
assumption that t � U. The atoms must have the property
that the spin state behaves as a spin singlet, and the ground
state has one electron in it. An example is the copper atom
in a crystal where the normal valence is Cu2þ, which is a
state of one d hole. Adding another electron creates the
Cuþ state which is a full shell. There are many other
examples among the rare-earth-metal series: cerium and
ytterbium are examples.

We denote this as the N þ 1 problem. The ground state
hasN electrons: one per atom. We prove that the additional
electron (þ 1) can move freely down the chain, regardless
of the spin arrangements. In this free motion, it advances

the spin states by one atom. WhenU � t the energy bands
split in two. The lower Hubbard band, in which there are no
doubly occupied sites, is occupied when the number of
electrons is less than the number of sites (Ne < N). The
upper Hubbard band is starting to be filled when Ne > N.
Then there are doubly occupied sites, so this band is higher
in energy byU. The case we discuss has one electron in the
upper Hubbard band.
If there is only one electron in the chain of N atoms, the

eigenvalues are

"ð�Þ ¼ 2t cosðk�Þ; k� ¼ ��

N þ 1
: (2)

When we have N electrons in a chain of N atoms, the
ground state will have one electron at each site, and the
electronic energy band is half full. Each atom has one
electron, which can be either in the spin up (� ¼ þ) or
down (� ¼ �) positions. There is an energy gain of�J �
�t2=U if neighboring spins are antiparallel, due to short-
range fluctuations. In one dimension there is no long-range
order of the spin ordering. These are well-known properties
of the Hubbard model [11].
For the operation of the shift register, the computer

operator will determine the arrangement of the spin order-
ing in the chain. The temperature must obey the relation-
ship kBT � J in order that thermal fluctuations do not
change the spin ordering to a lower energy configuration.
The values of U for the rare-earth-metal atoms are well
known [12]. The values of the hopping t are quite variable.
There are many different solids, with many different facets,
and the atoms can be put in different lines on these differ-
ent crystal faces. So the values of J can be chosen to give
suitable properties.
The operation of the shift register is quite simple.

Denote the initial spin ordering as j�1�2 � � ��Ni. An addi-
tional electron is injected at one end, say the site 1, from
the left-hand lead. The spin arrangment is now
jd1�2 � � ��Ni, where dj denotes double occupancy, and

that site is a closed shell. Denote ��j ¼ ��j. The next

action is an electron hops from site one to site two. Since
site two has a spin with �2, the electron that hops must be
in the state with ��2. That leaves in site one the spin �2. So
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after one hop the configuration is j�2d2�3 � � ��Ni. The
next hop is to site three, and the electron that hops must
have spin ��3, leaving �3 in site two. The hopping creates
the chain of states

jd1�2 � � ��Ni ! j�2d2�3 � � ��Ni
! j�2�3d3�4 � � ��Ni � � � : (3)

The N � 1 hop takes one to the state j�2�3 � � ��NdNi.
The final hop takes the electron to the right-hand lead. The
computer operator can control the spin state of the lead, in
order to leave a state �0

N in the last atom. The effect of an
electron being transported down the wire is that the spin
information is shifted by one atom, all along the chain of
atoms, in the opposite direction of the electron motion.
This motion is a coherent process, and has the same
eigenvalue as Eq. (2). If one sets up a Hilbert space with
all of the above-mentioned eigenstates, one has a tridiag-
onal matrix whose eigenvalues are identical to those of one
electron traveling down an otherwise empty band. The
tridiagonal matrix has off-diagonal elements of t, diagonal
elements of E0 ¼ 0, and its eigenvalues and eigenfunctions
are given in Ref. [13]. The spin shift register operates
coherently and rapidly.

In order to store information, one must be able to control
the spin configuration of the electrons in one lead. This is a
magnetic conductor whose ferromagetic order parameter is
switchable. Spin-filter tunneling is one option [14].

The above analysis includes effects in the first order of
perturbation theory. One can also include effects in second
order in the term of J, which we assume is small compared
to t. Each pair of antiparallel neighboring spins has a
ground state energy of -2J, while parallel pairs do not.
When the extra electron hops onto a site that is part of an
antiparallel pair; it may change this ground state energy by
�2J. The tridagonal matrix mentioned above has diagonal
site energies of the form 2sjJ where sj ¼ ð�1; 0; 1Þ. The
second-order energy is

�ð2ÞðkÞ ¼ 2J

N þ 1

XN

j¼1

sjsin
2ðjkÞ: (4)

Neglecting end effects, sj has as many plus values as

negative values, so that the above expression winds up
being of order OðJ=NÞ. The second-order effects appear
to be small. Such fluctuating site energies are similar to the
Anderson model of localization. However, localization is
not a factor in relatively short, finite, chains.

The above analysis is for electron transport down a
linear chain of N atoms. There are several related physical
systems. One is an electron moving on the Bethe lattice
[11] when all sites already have one electron bound to it. It
is easy to show that the extra electron has exactly the same
self-energy as an electron moving on an empty lattice. The
feature that the spin of the electron that moves is flipping
does not change the dispersion relation, nor the density of
state.

Another related physical system is the transport of elec-
trons in a periodic system ofN atoms, as when they are in a
ring. This cannot be used as a memory device, but has
interesting eigenstates. As the result is unexpected, we first
solve a simple example. At the end we generalize to any
chain with any spin arrangement. In all cases we consider
the N þ 1 problem.
If the chain had only one electron, the eigenvalues are

similar to Eq. (2), except that

k� ¼ 2��

N
; � ¼ 0;�1;�2 � � � : (5)

The result is similar with N þ 1 electrons but with a twist.
Consider a periodic chain of N ¼ 7 atoms with eight

electrons. Initially, the first site is doubly occupied, while
the other sites have three spins up, and three down, in the
arrangement jd1 """###i. After the extra electron has gone
around the circle once, say in the clockwise direction, the
arrangement is jd1 ""###"i. The other six spins have shifted
positions. After going around twice the arrangement is
jd1 "###""i. The extra electron has to go around 6 times to
return the other six spins to the original configuration. The
Hilbert space has 6� 7 ¼ 42 states. The ‘‘twist’’ is that the
eigenvalues have N ¼ 42 in Eq. (5), rather than N ¼ 7.
The following two initial arrangements also generate a
Hilbert space with N ¼ 42:

jd1 ""##"#i; jd1 "##""#i: (6)

The following arrangement generates a Hilbert space of
N ¼ 14

jd1 "#"#"#i: (7)

These four arrangements, and their cyclic permutations,
compose the total number of 140 ¼ 7!=ð3!Þ2 different spin
arrangements when there are three up spins and three down
spins. In general, for a chain of N atoms, with N þ 1
electrons, the number of different arrangements is
N!=ðN"!N#!Þ, where N" þ N# ¼ N � 1. They are divided

into different Hilbert spaces depending on the type of
cyclic arrangment. Many have dimension of NðN � 1Þ. A
ferromagnetic chain has a Hilbert space of N, which is the
minimum number.
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