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In transition metals and their compounds, the orbital degrees of freedom gives rise to an orbital current,

in addition to the ordinary spin and charge currents. We reveal that considerably large spin and anomalous

Hall effects observed in transition metals originate from an orbital Hall effect (OHE). To elucidate the

origin of these novel Hall effects, a simple periodic s-d hybridization model is proposed as a generic

model. The giant positive OHE originates from the orbital Aharonov-Bohm phase factor, and induces spin

Hall conductivity that is proportional to the spin-orbit polarization at the Fermi level, which is positive

(negative) in metals with more than (less than) half filling.
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The Hall effect, first discovered at the end of 19th
century, has revealed the profound nature of electron trans-
port in metals and semiconductors via the anomalous Hall
effect (AHE) and (fractional) quantum Hall effects. It has
recently been recognized that conventional semiconduc-
tors and metals exhibit a spin Hall effect (SHE), which is
the phenomenon where an electric field induces a spin
current (a flow of spin angular momentum sz) in a trans-
verse direction [1–5]. Recently, a theory of the intrinsic
Hall effect proposed by Karplus and Luttinger [6], which
occurs in multiband systems and is independent of impu-
rity scattering, has been intensively developed [7,8]. In
particular, a quantum SHE has also been predicted and
experimentally confirmed [9,10].

The spin Hall conductivity (SHC) observed in transition
metals has given rise to further issues regarding the origin
of the SHE, since the SHC observed in Pt exceeds
200 @e�1 ���1 cm�1, which is approximately 104 times
larger than that of n-type semiconductors [5], and the
SHCs in Nb and Mo are negative [11]. The large SHE
and the sign change of the SHC in transition metals has
attracted much interest, and many theoretical studies of the
SHE have so far been conducted based on realistic multi-
band models for Ru-oxide [8] and various 4d and 5dmetals
[12], including Au, W [13], and Pt [14,15]. The calculated
results for the SHC semiquantitatively agree with the ob-
served results. The mechanism for the SHE has been ex-
plained in such a way that spin-orbit interactions (SOI) and
the phase of hopping integrals of electrons give rise to the
Aharonov-Bohm (AB) effect, and therefore the conduction
electrons are subject to an effective spin-dependent mag-
netic field.

Since the transition metals have orbital degrees of free-
dom in addition to the spin and charge degrees of freedom,
flow of the atomic orbital angular momentum (lz), that is,
an orbital current, may be realized in a nonequilibrium
state. In fact, several authors have predicted the emergence

of a large orbital Hall effect (OHE) [8,12,16], which is a
phenomenon where an electric field induces a flow of p-
and d-orbital angular momentum in a transverse direction.
In particular, the predicted orbital Hall conductivity (OHC)
in transition metals and oxides [8,12] is considerably larger
than the SHC. Figure 1 shows the OHC and SHC calcu-
lated for transition metals using the Naval Research
Laboratory tight-binding (NRL-TB) model [17]. In each
metal, the magnitude of the OHC exceeds the SHC, even in
topological insulators (e.g., �e=2� in graphene [9] and
HgTe [10]). Interestingly, while the SHC consistently
changes its sign with the electron number n, as with several
recent experiments [5,11], the obtained OHC is almost
independent of the SOI and is always positive. These
prominent and universal features of orbital dynamics in

γ = 0.02Ω

FIG. 1 (color online). SHC and OHC obtained in Ref. [12].
The body-centered cubic structure for n ¼ 5, 6, the hexagonal
closed packed structure for n ¼ 7, 8, and the face-centered cubic
structure for n ¼ 9� 11. nd � n� 1 in each metal. The SHC in
Pt is approximately 1 in the unit of e=2�a � 103 ��1 cm�1,
where a ¼ 0:39 nm is the lattice constant in Pt. R � hlzsziFS is
the spin-orbit polarization for 5d metals.
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metals, independent of crystal and multiband structures,
have not been recognized until recently.

In spite of these remarkable features of the SHC and
OHC given in previous works [8,12], no physical origin of
the ‘‘giant OHE’’ nor ‘‘hidden relationship’’ between OHE
and SHE have been presented. We will show below that the
key phenomenon is the orbital Hall current, which origi-
nates from the ‘‘orbital AB phase factor’’ that reflects the
phase factor of the d-orbital wave function. Then, the SHC
is approximately given by the product of OHC and the
spin-orbit polarization due to the SOI. Even the AHE is
understandable in the same concept.

In this Letter, we discuss these intrinsic Hall effects in a
unified way by proposing a simple s-d hybridization model
as a generic model, and explain why the OHC is positive
and much larger than e=2� in each transition metal. We
stress that the large SHE in transition metals originates
from the OHE in the presence of atomic SOI, not from the
Dirac point monopole as in semiconductors. The derived
SHC is approximately proportional to the spin-orbit polar-
ization, which is positive (negative) in metals with more
than (less than) half filling, which is consistent with recent
experimental observations [4,5,11]. It is noted that the
present OHE is different from the Hall effect of the angular
momentum of s-electrons r� p discussed in Ref. [18].

In �nd transition metals ( �n ¼ 3� 5 is the main quantum
number), the electronic states near the Fermi level (�) are
constructed by �nd-orbitals, which hybridize with free-
electron-like ð �nþ 1Þs- and ð �nþ 1Þp-bands, and form a
narrow band with a bandwidth in the order of 1 eV [17].
The band structures of the transition metals are well char-
acterized by the lattice structures. However, the OHC
seems to be independent of the atomic species of the
transition metals as shown in Fig. 1. The result suggests
that the details of the band structure may be irrelevant to
the occurrence of the large OHC in transition metals.
Therefore, two-dimensional (2D) s-d hybridization model
with the orbital degree of freedom was adopted to study the
universal nature of the OHE in transition metals. The s-d
hybridization model may also be the simplest version of
the muffin-tin potential approximation, where localized
d-electrons can move only via s-d hybridization.

The Hamiltonian for the 2D s-d hybridization model is

given by H0 ¼
P

k;�â
y
k�Ĥ0âk�, where

Ĥ 0 ¼
�k VkL Vk�L
V�
kL Ed 0

V�
k�L 0 Ed

0
@

1
A; (1)

and tâk� ¼ ðck�; dkL�; dk�L�Þ; ck� and dkM� are annihi-
lation operators for the s- and d-electrons, respectively.
� ¼ �1 (or " , # ) is the spin index, and M ¼ �L (L is a
positive integer) represents the angular momentum of the d
electron. �k and Ed represent the unhybridized energies of
the s- and d-electrons, respectively, and VkM is the s-d
mixing potential. In transition metals, the OHE and SHE
are mainly caused by interorbit transitions between dyz and

dzx (lz ¼ �1) orbitals, and dxy and dx2�y2 (lz ¼ �2) orbi-

tals [12,14]; the former (latter) contributions can be ob-
tained by letting L ¼ 1 (L ¼ 2) in the present 2D model.
To elucidate the universal properties of the OHC and

SHC that are independent of the detailed crystal structure,
we assume that �k ¼ k2=2m (plane wave). As is well

known, eik�r ¼ P
ni

nJnðkrÞeinð’k�’rÞ, where Jn is the
Bessel function, ’k ¼ tan�1ðkx=kyÞ and ’r ¼
tan�1ðx=yÞ. Since the wave function of the d-electron is
�MðrÞ ¼ fðrÞeiM’r , the s-d mixing potential is given by
VkM ¼ Rðeik�rÞ�H0�MðrÞdr ¼ V0e

iM’k in the extended
Brillouin zone scheme [19–21]. (Note that VkM ! V�

kM

under the particle-hole transformation.) Here, the
k-dependence of V0 is neglected. We will show that the
phase factor of VkM plays an essential role in the OHE, and
the derived OHC takes a large value irrespective of the
nonconservation of M ¼ �L.
The present model is similar to the periodic Anderson

model, which has been intensively studied as an effective
model for f-electron systems [19–21]. The close similarity
between the periodic Anderson model and the d-p model
has been indicated in the previous study of the AHE [22].
As is well known, the hybridization band of Eq. (1) is given

as E�
k ¼ 1

2 ½ð�k þ EdÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�k � EdÞ2 þ 2V2

0

q
	, the band

structure of which is shown in Fig. 2(a). In the metallic
state, the Fermi level � is located in the upper (Eþ

k ) or
lower (E�

k ) branch, and the relationship ð�� �kF Þ�ð�� EdÞ ¼ 2V2
0 holds. The relation Ndð0Þ=Nsð0Þ ¼

2V2
0=ð�� EdÞ2 
 1 is satisfied in transition metals, where
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FIG. 2 (color online). (a) Schematic band structure of the s-d
hybridization model in Eq. (1). (b) Examples of the clockwise
motions of electrons along the nearest three sites, which give the
orbital AB phase factor eiL�i with �i > 0. (c) Localized d-orbital
state and the Fermi level of conduction electrons under Ey. (d) A

semiclassical explanation for the Hall current (?E) due to the
angular momentum conservation. A left-moving electron is
converted to right-moving by mixing with lz ¼ þL orbital.
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Nsð0Þ ¼ m=2� is the s-electron density of states (DOS)
per spin in 2D, and Ndð0Þ is the d-electron DOS at �.

According to the linear-response theory, the intrinsic
Hall conductivity is given by the summation of the Fermi
surface term (I-term) and the Fermi sea term (II-term) [23].
In previous work, we have shown that the I-term is domi-
nant in many metals [12,14,24]. Using the 3� 3 Green

function Ĝ0
kð!Þ ¼ ð!þ�� Ĥ0Þ�1, the I-term of the

OHC at T ¼ 0 is given by [8,12]

Oz
xy ¼ 1

�N

X
k

Tr½ĴOx Ĝ0
kði�ÞĴCy Ĝ0

kð�i�Þ	; (2)

where ĴCy is the y-component of the charge current, which

is given by �e@Ĥ0=@ky. In the present model,

Ĵ C
y ¼ �e

ky=m iL kx
k2
VkL �iL kx

k2
V�
kL

�iL kx
k2
V�
kL 0 0

iL kx
k2
VkL 0 0

0
BB@

1
CCA; (3)

where �e is the charge of the electron. In addition, ĴOx in
Eq. (2) is the x-component of the orbital current, which is

given by ĴOx ¼ fĴCx ; l̂zg=ð�2eÞ [12], where ðl̂zÞi;j ¼
Lð�i;2 � �i;3Þ�i;j. In the present model,

Ĵ O
x ¼ 1

2
iL2

ky

k2

0 VkL V�
kL�V�

kL 0 0
�VkL 0 0

0
@

1
A: (4)

Here, the relations @VkL=@kx ¼ �iLðky=k2ÞVkL and

@VkL=@ky ¼ iLðkx=k2ÞVkL are used [21]. Thus, the mo-

mentum derivative of the s-d mixing potential gives rise to
an anomalous velocity that is perpendicular to k: The OHC

is proportional to hðĴCy Þ1;1ðĴOx Þ1;2V�
kLiFS � 0.

By inserting Eqs. (3) and (4) into Eq. (2), the OHC in the
present model is simply obtained as

Oz
xy ¼ eL2

4�
� 2V

2
0

mN

X
k

�

jgkði�Þj2
; (5)

where N is the number of k-points, gkð!Þ ¼ ð!þ��
Eþ
k Þð!þ�� E�

k Þ, and � is the damping rate (due to
impurity potentials). The obtained OHC is finite even if
SOI is absent [8,12,14]. Since lim�!þ0�=ðx2 þ �2Þ ¼
��ðxÞ and 1

N

P
k�ð�� E�

k Þ ¼ Ndð0Þ, we obtain that

Oz
xy ¼ eL2

4m

�
Ndð0Þ 2V2

0

ðEþ
k � E�

k Þ2
�
� eL2

4�
; (6)

where we used that the term in the bracket is�Nsð0Þ when
Ndð0Þ=Nsð0Þ 
 1. Thus, the OHC takes an approximate
universal positive value, independent of the model parame-
ters. For the 3D s-d hybridization model, VkM is propor-
tional to the spherical harmonics with L ¼ 2. In this
model, we obtain Oz

xy � ðe=2�aÞ� if we put kF � �=a,

where a is the lattice spacing. This result is qualitatively
consistent with the results in Fig. 1 for n � 9. (OHCs in Au

and Ag are small since nd ¼ 10.) We have verified that the
II-term is negligibly small.
The reason why the giant OHE emerges in transition

metals based on a 2D tight-binding model with three
orbitals (s and d�L) at each site is now discussed. Long-
range hopping integrals must be considered to reproduce a
free-electron-like s-electron dispersion [17]. Figure 2(b)
illustrates two examples of the clockwise motion of elec-
trons along the nearest three sites [dL ! s ! s ! dL]; as
discussed in Ref. [12], these are important processes for the
OHE because the s-d hopping integrals are much larger
than the d-d hopping integrals. Therein, the electron ac-
quires the phase factor eiL� due to the angular dependence
of the mixing potential in real-space, VLðrÞ / eiL’r , where
� is the angle between the incoming and outgoing electron
(� ¼ �=4 or �=2 in this figure). This can be interpreted as
the ‘‘orbital AB phase’’ given by the effective magnetic
flux 	0ðL�=2�Þ through the area of the triangle, where
	0 ¼ 2�@=e is the flux quantum. It is simple to check
whether any of the other three-site clockwise motions
cause the factor eiL� with � > 0. Therefore, the
d-electron with lz ¼ �L is subject to the huge and positive
effective magnetic field that reaches ��	0=a

2. This is
the origin of the giant positive OHE in the order of e=2� in
transition metals.
We also present a simple semiclassical explanation, in

that the OHE is a natural consequence of the imbalance in
s-d hybridization under the electric field Ey. In the muffin-

tin model, the localized d-electron (virtual bound state)
moves to the conduction band via the s-d mixing potential
[25] as shown in Figs. 2(c) and 2(d). According to the
Fermi’s golden rule, the d ! s tunneling probability at
point B is given by �B � R

�
�B

d!Ndð!ÞjV0j2Nsð!Þ, where
�B ¼ �� eEyrd is the electrochemical potential at B

under Ey Then, �A ¼ ��B and �B � eEyrd since Nsð0Þ �
j�� �kF j�1 and Ndð0Þ � j�� Edj�1. Because of the an-

gular momentum conservation, the velocity of emitted
(absorbed) electron at point B (A) has x-component; vL

x �
ð�ÞL=rdm. If we assume that the tunneling s-electron
hybridizes to one of the neighboring sites, the current of
the successive tunneling electron will be j�L

x �
�nj�d!sj � a sin’o, where n is the electron density and
sin’o � jvL

x j=vF �Oð1Þ. Therefore, the estimated trans-
verse d-orbital current density is

jOx � X
M¼�L

MjMx � eL2Eyna=mvF: (7)

Since a� �k�1
F and n� a�2, Oz

xy � jOx =Ey is in the order

of þeL2. Thus, Eq. (6) is reproduced (aside from a nu-
merical factor) by this semiclassical consideration.
We note that the partial wave of the lz ¼ L channel,

c LðrÞ / JLðkrÞeiL’r , has a small overlap integral between
the nearest sites,

R
c �

LðrÞc L0 ðrþ ax̂Þdr, for L0 ¼ �L, due
to the phase factor in c LðrÞ. For this reason, lz is quasi-
conserved when the tunneling s-electron hybridizes to the
d-orbital at a neighboring site. Mathematically, the anoma-
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lous velocity is given by taking the gradient of the phase
factor in c LðrÞ; see Eq. (4).

Next, we discuss the SHE in the presence of the atomic
SOI; 


P
il � sii (
 > 0). Since hMjl�jM0i ¼ 0 for � ¼ x, y

in the present 2D model, the atomic SOI for the �-spin is

given by ðĤ�

 Þi;j ¼ ð
�=2ÞLð�i;2 � �i;3Þ�i;j. Also, only the

z-component of SOI is significant for the SHE in real
transition metals [12,14]. Using the Green function

Ĝk�ð!Þ ¼ ð!þ�� Ĥ0 � Ĥ�

 Þ�1, the SHC is given by

�z
xy ¼ 1

2�N

X
k;�

�

�2e
Tr½ĴCx Ĝk�ði�ÞĴCy Ĝk�ð�i�Þ	: (8)

If the 
-dependence of eigenenergies is neglected, which
corrects the SHC of order Oð
3Þ to, Eq. (8) becomes

�z
xy � 2R=L2 �Oz

xy; (9)

where R � hl̂zŝziFS represents the spin-orbit polarization
ratio due to the SOI at the Fermi level, which is given by
R ¼ L
=ð�� EdÞ in the present model up to Oð
Þ. Thus,
the SHC is positive (negative) when � is located in the
upper branch Eþ

k (lower branch E�
k ).

It is natural to expect that the relationship in Eq. (9)
holds in real transition metals, where the spin-orbit po-

larization ratio is defined as R ¼ P
m

R
FShl̂zŝzik;mdSk;m=P

m

R
FS dSk;m in real systems, where m is the band index.

To verify this expectation, R is shown for 5d metals given
by the NRL-TB model in Fig. 1: The obtained R is positive
(negative) in metals with more than (less than) half filling,
which is consistent with Hund’s rule. The qualitative simi-
larity between the SHC and R in Fig. 1 indicates that the

spin current ~jS is induced parallel to R � ~jO, and therefore
the relationship in Eq. (9) holds approximately for various
metals. (In fact, 
lzsz provides the dominant contribution
to the SHE [12].) As a result, the present analysis based on
a simple s-d hybridization model captures the overall
behavior of the OHE and SHE in transition metals.

In the low resistivity regime, the intrinsic SHC is given
by integrating the k-space Berry curvature of Bloch wave
function (Berry curvature term) [1,2,12,14,15]. In fact,
previous studies based on the tight-binding models
[12,14] and the band calculation [15] had succeeded in
reproducing experimental SHC’s in several transition met-
als with low resistivity, both in magnitude and sign [5,11].
The present study has shown that the large Berry curvature
in transition metals, the origin of which had been unclear,
originates from the d-orbital angular momentum. We have
revealed the existence of the real-space orbital Berry phase
( ¼ AB phase), which causes not only the giant positive
OHE without using the SOI, but also the SHE and AHE if
R � 0. By virtue of this scheme, hidden relationships
between the OHE and SHE have been derived. Although
the OHE is indirectly observed via SHE and AHE, it is
interesting to detect the OHE directly: We propose that a

mesoscopic ‘‘H-shape’’ circuit will be useful, which was
originally used to measure the SHC in semimetals [26].
To summarize, we have revealed that the giant positive

OHE in transition metals originates from the orbital AB
phase due to the d-orbital angular momentum, without
necessity of any special band structure (e.g., Dirac point
monopole at �). We have shown that the OHE is the
essential phenomenon, and it induces the large SHE
(AHE) in paramagnetic (ferromagnetic) metals in the pres-
ence of SOI. The sign of the SHC is equal to that of the
spin-orbit polarization (Hund’s rule), which is consistent
with recent experimental observations [4,5,11]. An intui-
tive explanation for the intrinsic Hall effect in real space is
presented in Figs. 2(c) and 2(d).
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