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We study the Anderson-Hubbard model in the Hartree-Fock approximation and the exact diagonaliza-

tion under the coexistence of short-range interaction and diagonal disorder. We show that there exist

unconventional soft gaps, where the single-particle (SP) density of states (DOS) A follows a scaling in

energy E as AðEÞ / exp½�ð�� logjE� EFjÞd� irrespective of electron filling and long-range order. Here,

d is the spatial dimension, EF the Fermi energy and � a nonuniversal constant. We propose a multivalley

energy landscape as their origin. Possible experiments to verify the present theory are proposed.
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Metal-insulator transitions (MIT) have been a funda-
mental issue in condensed matter physics for a long time.
The MIT is driven either by electron correlations, for
example, as Mott transitions [1], or by random potentials
as Anderson transitions [2]. When the interaction causes an
insulator, it opens a SP gap at the Fermi energy EF. The
Mott gap and a gap induced by an antiferromagnetic order
(AF) are typical examples. On the other hand, the
Anderson insulator exhibits absence of the gap with non-
zero DOS at EF, where the insulators are characterized not
by the vanishing carrier number but by a singular relaxa-
tion time. This makes fundamental differences in low-
energy excitations between the Anderson and Mott
insulators.

In real materials, however, electron correlations and
randomness inevitably coexist, which may take on aspects
qualitatively different from the simple Anderson or Mott
insulators [3,4]. In particular, under the influence of the
interaction, Anderson insulators show qualitatively differ-
ent feature. Efros and Shklovskii [5] (ES) have clarified
that in the Anderson insulator with the long-range
Coulomb interaction, a soft Coulomb gap opens in the
SP DOS, AðEÞ with a power-law scaling as AðEÞ / jE�
EFj�, � ¼ d� 1 near EF. The validity of the ES theory
was confirmed numerically and in experiments [6] later. In
contrast, within the ES theory, short-range interactions do
not generate soft gaps.

Even for short-range interaction, however, soft gaps with
� ’ 0:5 were reported in a Hartree-Fock (HF) study in
three dimensions (3D) [7]. Recent numerical studies in
two dimensions also show the suppression of DOS near
EF [8,9]. These suggest the presence of an unconventional
mechanism which suppresses the DOS even with short-
range interaction. In contrast, a numerical study with the
dynamical mean-field theory (DMFT) claimed nonzero
AðEFÞ even in the insulating phases [10]. Several mean-
field studies gave similar results [11,12]. We clearly need
further studies for comprehensive understanding of the
short-range case.

Since the dielectric constant diverges at the MIT, effects
of the long-range part of the Coulomb interaction are
restricted to low energies and the short-range part domi-
nates electronic structures in the experimental energy scale
near the MIT. Therefore, unconventional soft gaps, if they
exist, may be observed near MITs in real measurements.
Indeed, recent photoemission results of SrRu1�xTixO3

[13,14] as well as a HF study with the long-range
Coulomb interaction [15] indicate breakdown of the ES
scaling near the MIT in 3D.
In this letter, through numerical analyses of DOS at

energies lower than those of the previous studies, we
show even short-range interaction drives opening of a
soft gap irrespective of the electron filling, originating
from a mechanism entirely different from the ES theory.
We call it soft Hubbard gap. We show numerical evidences
of the soft Hubbard gaps with the HF approximation in
one and three dimensions, where DOS AðEÞ follows an
unconventional scaling in energy E as AðEÞ /
exp½�ð�� logjE� EFjÞd� with � being a nonuniversal
constant. Further support by the exact diagonalization
(ED) in one dimension (1D) is given. This scaling reduces
to a power-law decay of AðEÞ toward EF for d ¼ 1 and
even a faster decay for d > 1 in contrast to the previous HF
study [7]. To clarify the origin of the soft gap, we propose a
phenomenological theory. The phenomenology is further
numerically tested in detail against the HF results in one
dimension.
The Anderson-Hubbard Hamiltonian is defined by

H ¼ �t
X
hi;ji;�

cyi�cj� þU
X
i

ni"ni# þ
X
i;�

ðVi ��Þni�;

(1)

on lattices with Ns sites and Ne electrons, where t is a

hopping integral, U the on-site repulsion, cyi� (ci�) the
creation (annihilation) operator for an electron with spin

� on the site i, ni� ¼ cyi�ci� and � the chemical potential.
The random potential Vi is spatially uncorrelated and
assumed to follow two models of the distribution PVðViÞ:
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the box type of width 2W, PVðViÞ ¼ 1=2W (jVij<W)
with the average hVii ¼ 0, and the Gaussian type,
PVðViÞ ¼ 1ffiffiffiffiffi

2�
p

�
expð�V2

i =2�
2Þ (�2 ¼ W2=12). For both

the distributions, � ¼ U=2 corresponds to half filling.
We take the lattice spacing as the length unit.

We first employ the HF approximation, where the wave
function is approximated by a single Slater determinant
consisting of a set of orthonormal SP orbitals f�ng (n is an
orbital index). The HF equation reads�

H 0 þU
X
i

ðhni#ini" þ hni"ini#Þ
�
�n ¼ �n�n; (2)

whereH 0 is the one-body part of the Hamiltonian and we

neglect hcyi"ci#i. To find a site-dependent mean-field solu-

tion hni�i for the HF equations, we employ the iterative
scheme. One typically needs from several to several tens of
initial guesses in obtaining convergent physical quantities
such as AF order parameters and DOS.

Figure 1(a) shows the ground-state phase diagram at half
filling in three dimensions. We identify insulating phases
by extrapolation of the localization lengths � to the bulk
limit. The localization length � is defined by the asymp-
totic behavior of SP orbitals near EF at long distances as
�n / expð�r=�Þ, where r is the distance from the center of
the orbital. We obtain the AF magnetic transition points by
fitting the AF magnetic order parameter with the mean-
field critical exponent, 1=2. Detailed analyses of the phase
diagram will be discussed elsewhere. For U < 6 and with
increasing W from 0, metals appear from AFI as in the 2D

result [16], with further reentrant transition to insulators
(AFI or PI). Naively one might expect AðEFÞ> 0 forW >
0. Figure 1(b) shows DOS for typical parameters. Indeed,
there are no soft gaps whenU or t is zero. However, we find
soft Hubbard gaps over the entire insulating phases in the
case of U > 0 and t > 0 regardless of the AF magnetic
order. Although a power-law scaling AðEÞ / jE� EFj�
with exponents 0:5<�< 1 looks fit in the range jE�
EFj> 0:1 (not shown) being consistent with the previous
HF study [7], closer look for jE� EFj< 0:1 fits better
with AðEÞ / expð� ð�� logjE� EFjÞ3Þ with � > 0 rather
than the power-law scaling.
The unconventional soft gaps exist also in 1D regardless

of electron filling. Figure 2(a) shows DOS with the HF
approximation for the box distribution of PV . Here, holes
are partially doped with the chemical potential � being
shifted by�1:0 from the half filling to increase the average
distance between electrons to capture long-range asymp-
totic behavior easily. In contrast to the 3D case, they fit
well with a power law AðEÞ / jE� EFj� even at low
energies. The gaps again vanish with the decreasing energy
scale when t or U becomes zero (not shown).
In Fig. 3(a), we further show DOS with ED in 1D.

We assume a scaling function that Að�; N�1
s Þ ¼

N�	
s fð�N	=�

s Þ ¼ ��gðN�	=�
s ��1Þ corresponding to

Að�; N�1
s ¼ 0Þ / �� and Að� ¼ 0; N�1

s Þ / N�	
s (� ¼ jE�

EFj). As shown in Fig. 3(b), DOS well converges to this
scaling function with � ¼ 0:075 and 	 ¼ 0:375. Although
a possible logarithmic scaling cannot be excluded because
of the small system size, the ED results are consistent with
the HF results and support a mechanism of the soft gap
working beyond the mean-field level. Because the soft gap
is restricted to very low energies in our 1D study, further
analyses at lower energies are desired in 2D, where only a
pseudogap has been found so far [8].

FIG. 1 (color online). (a) Ground-state phase diagram of 3D
Anderson-Hubbard model at half filling for Gaussian distribution
of PV . AFI, AF insulator; AFM, AF metal; PI, paramagnetic
insulator (Anderson insulator); PM, paramagnetic metal.
(b) DOS with system size 8� 8� 250: A (t ¼ 1, U ¼ 6, W ¼
5), B (t ¼ 1, U ¼ 4, W ¼ 30), C (t ¼ 1, U ¼ 0, W ¼ 30), D
(t ¼ 0, U ¼ 4, W ¼ 30). We employ Lorentz broadening with a
broadening factor 1:25� 10�3 and 6:25� 10�4 for A and B,
respectively. The broken lines denote jE� EFj ¼ 10�2 and
10�1. The DOS fits well with AðEÞ / expð� ð�� logjE�
EFjÞ3Þ shown by the fitting lines for 10�2 < jE� EFj< 10�1

as shown in the lower panel.

FIG. 2 (color online). (a) DOS by HF in 1D at t ¼ 0:3, U ¼
1:0, W ¼ 2:0, EF ¼ U=2� 1 (Ns ¼ 14). Fitting of DOS gives
� ¼ 0:85� 0:07 (solid line), which is in good agreement with
the expected exponent of b0=b ¼ 0:79� 0:02 (broken line).
(b) Numerical estimates of PðRÞ and �ðRÞ. Fitting by Eqs. (4)
and (6) gives b0 ¼ 1:06� 0:01 and b ¼ 1:34� 0:01.
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Now we discuss a possible origin of the soft gap. For
simplicity without loss of generality, we restrict ourselves
to a SP excitation for the electron side, namely, E> EF.
We consider the case of rint � �, where rint is the range of
the interaction in the model. For t � 0, virtual hopping of
electrons generates effective interaction, which exponen-
tially decreases with the mutual distance. This effect is not
considered in the ES theory which regards electrons as
classical particles. The DOS averaged over the random
potential is obtained as

AðEÞ ¼
�Z 1

�1
PVðV1ÞA1ðE; V1ÞdV1

�
fV�1g

; (3)

where the symbol fV�1g denotes a set of random potentials
Vi except for V1. Note that A1ðE; V1Þ is the DOS under the
condition of the fixed V1 at the site 1 and implicitly
depends on fV�1g. Here we decompose the average over
the random potential into the part for V1 as described byR
PVðV1ÞdV1 at fixed configurations of fV�1g and the sub-

sequent average with respect to fV�1g.
We discuss V1 dependence of A1ðE;V1Þ for fixed fV�1g.

When V1 decreases, the ground-state occupation of the site
1 changes from 0 to 1 and then from 1 to 2 at V1c1 and V1c2,
respectively. A possible ground state j�0i at V1 > V1c1 is
illustrated in Fig. 4(a), where the site 1 is empty and the

total particle number is Ne ¼ Na and the energy E0ðV1Þ.
Near V1c1 but for V > V1c1, a SP excited state j�1i with
Ne ¼ Na þ 1 and the energy E1ðV1Þ is defined by the
electron configuration except for the site 1 is fixed to be
the same as j�0i, as is illustrated in Fig. 4(b). One might
think that j�1i becomes the ground state below V1c1, where
Ne ¼ Na þ 1. In this case, however, the SP excitation gap
E1 � E0 vanishes at V1c1 leading to absence of a gap in the
V1-averaged DOS at the site 1. Thus the numerical evi-
dences of the soft gaps indicate that j�1i as a SP excited
state is excluded by the electron correlation.
In contrast to the ES theory, we assume a multivalley

energy landscape, which may be characteristic to random
systems. Then there exist many arbitrarily-low-energy ex-
cited states whose configurations are the same with j�0i at
the site 1 but globally different on other sites. In Fig. 4(c),
we illustrate a state j�0

0i at a local minimum E0
0 nearly

degenerate with j�0i, whose configurations not only at the
occupied site n nearest to the site 1 at the distance R but
also farther sites (> R) are relaxed one after another.
Figure 4(d) shows a SP excited state j�0

1i from j�0
0i with

the energy E0
1 and the site-1 occupancy identical with j�1i.

Here, the two nearly-degenerate states, j�1i and j�0
1i are

separated by a barrier, where multiparticle relaxation is
required to reach from one to the other. Now E1 is given by
ðV1 � EFÞ þ

P
iU1i þ E0, where U1i is the interaction en-

ergy between electrons on the site 1 and those on the site i.
Note that only the particles at the sites i which satisfy R �
ji� 1j & Rþ � interact with the site 1 with the amplitude
jU1ij comparable to jU1nj because of the localized nature.
On the other hand, because E0 ’ E0

0 and the configurations

of j�0
1i on these sites are different from those of j�1i, E0

1 is
different from E1 by typically as much as jU1nj. Thus one
can find j�0

1i with the energy E0
1 lower than E1 by as much

as jU1nj among many nearly-degenerate states with j�1i.
Now E0

1ðV1Þ and E0ðV1Þ crosses at V1 ¼ V0
1c1 and for V1 <

V0
1c1 the ground state becomes j�0

1i. Note that the excita-
tion energy E0

1 � E1 is negative very near V
0
1c1 but for V1 >

V0
1c1. The state j�0

1i is not counted in DOS, because this
state is not a SP excitation of j�0i, but rather a multiply
excited state. Thus the energy difference � ¼ jE1ðV 0

1c1Þ �
E0
1ðV 0

1c1Þj is the lowest energy of SP excitations counted in
A near V1 ¼ V 0

1c1.
One might think that, as in the ES theory, it is possible to

lower the energy of j�1i from E1 to E0
1 by relaxing local

electronic configurations only near the site n. It, however,
always increases the energy of the electrons other than
those on the site 1, because they have already been opti-
mized in the ground state and the increase dominates at
large R. Thus a global reconstruction is required to lower
the energy.
From the above discussion, � scales as

�ðRÞ ¼ a expð�bRÞ; (4)

where a and b are nonuniversal positive constants.
Hereafter we neglect logarithmic corrections. Under the

FIG. 4 (color online). Schematic illustration of (a) the ground
state, (b) a SP excited state, (c) a nearly degenerate state with the
ground state and (d) a multiply excited state. (e) Schematic of V1

dependence of excitation energies.

FIG. 3 (color online). (a) DOS in 1D with ED (open boundary
condition): t ¼ 0:1, U ¼ 1:0, W ¼ 1:0, EF ¼ U=2, (Ns ¼ 2, 3,
4, 5, 6). We average the DOS over 3:2� 107 realizations of

disorder for Ns ¼ 6. (b) Scaling plot by Að�;N�1
s Þ ¼

N�	
s fð�N	=�

s Þ (� ¼ 0:075, 	 ¼ 0:375).
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assumption of linear dependence of the excitation energies
on V1 as shown in Fig. 4(d), the local DOS averaged by V1

has a gap of � as follows:

Z 1

V0
1c1

PVðV1ÞA1ðE; V1ÞdV1 / HsðE� EF � �Þ; (5)

where Hs is the Heaviside step function. The same argu-
ment applies around V1 ¼ V1c2.

The distribution of R with respect to fV�1g follows
PðRÞ ¼ a0 expð�b0RdÞ; (6)

at long distances, where a0, b0 are nonuniversal positive
constants again. Equations (4) and (6) lead to

Qð�Þ ¼ PðRð�ÞÞ
��������
dR

d�

��������/ ��1 exp

�
� b0

bd
ð� log�Þd

�
;

(7)

where Qð�Þ are the distribution function of �. Equations
(5) and (7) lead to

AðEÞ /
Z jE�EF j

0
d�Qð�Þ / exp

�
� b0

bd
ð� logjE� EFjÞd

�
;

(8)

which is consistent with the observed scaling in 1D and
3D, further also in 2D (not shown) within the HF approxi-
mation. We also confirmed that this scaling is equally valid
for a discrete distribution of PV (not shown). For d ¼ 1,
this leads to a power law with a nonuniversal exponent:

AðEÞ / jE� EFjb0=b. Nonuniversal power-law distribu-
tions of energies are common in Griffith phases [17].
Equation (4) indicates that a, namely, the energy scale of
the gaps vanishes as t or U vanishes. Furthermore, the
exponent � ¼ b0=b is expected to decrease as t becomes
smaller because of the reduction of �. These predictions
are consistent with our HF results in one dimension.
However, it conflicts with a DMFT study [10] and some
mean-field studies [11,12] which exhibit absence of the
soft gaps. This may be because they ignore spatial corre-
lations. The latter ignores inhomogeneity of the electronic
structures. Indeed, a DMFT study with the intersite self-
energy retrieves the suppression of DOS near EF [9].

In Fig. 2(b), we show a further numerical evidence of
our theory in 1D. Figure 2(b) shows �ðRÞ and PðRÞ calcu-
lated by the following procedure: First, we obtain the
ground state for each realization of random potentials.
We construct the lowest SP excited state by adding one
electron to the lowest unoccupied orbital. Next we opti-
mize the mean fields by the iterative scheme starting from
those of the SP excited state with Ne fixed. Then � is
obtained as the difference of these two excitation energies.
We calculate R as the distance between the center of the
lowest unoccupied orbital, r and those of the occupied
orbitals nearest to r in the ground state. We define the
center of the orbital as the site which has the maximum
weight. Fitting by Eqs. (4) and (6) gives b0 ¼ 1:06� 0:01,

b ¼ 1:34� 0:01. Estimated exponent of b0=b ¼
0:79� 0:02 is in good agreement with � ¼ 0:85� 0:07
obtained directly from DOS. This is a numerical evidence
for the validity of our theory.
Although the power-law was proposed to interpret the

photoemission experiments [13,14], our HF results in 3D
indicates that a different asymptotic behavior of the soft
Hubbard gap emerges at lower energies, namely,
<10 meV. Since recent development of photoemission
spectroscopy now allows us high-resolution measurement
down to 1 meV, we believe that our Letter provides in-
centive for such high-resolution photoemission experi-
ments as well as for other measurement such as electrical
transport measurement near the MITs.
In summary, we have found an unconventional type of

soft gaps in the Anderson-Hubbard model, although only
short-range interaction is present. To clarify their possible
origin, we have constructed a phenomenological theory.
Detailed comparisons between our theory and the non-ES
soft gaps observed in experiments are left as a future
challenge.
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