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In ab initio theory, defects are routinely modeled by supercells with periodic boundary conditions.

Unfortunately, the supercell approximation introduces artificial interactions between charged defects.

Despite numerous attempts, a general scheme to correct for these is not yet available. We propose a new

and computationally efficient method that overcomes limitations of previous schemes and is based on a

rigorous analysis of electrostatics in dielectric media. Its reliability and rapid convergence with respect to

cell size is demonstrated for charged vacancies in diamond and GaAs.
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The performance and long-term stability of many semi-
conductor devices such as solar cells, light-emitting di-
odes, or transistors is often governed by the creation,
transport, or annihilation of point defects [1]. The applica-
tion of electronic structure theory, notably density-
functional theory (DFT), has revolutionized our under-
standing of the formation and properties of defects such
as vacancies, interstitials, dopants, and impurities.

The common computational approach is to embed the
defect of interest into a periodic supercell with a neutraliz-
ing background [1–6], because it allows employing the
well-tested and efficient computer codes available for pe-
riodic systems. This approach, however, is hampered by
the slow convergence of the defect energy with respect to
the supercell lattice constant L. Its origin lies in the un-
physical electrostatic interaction between the defect and its
periodic images. The interaction energy can be estimated
from the Madelung energy of an array of point charges
with neutralizing background [6]

EMd ¼ ��q2

2"L
; (1)

where q denotes the defect charge, � the lattice-type-
dependent Madelung constant, and " the macroscopic
dielectric constant. Makov and Payne proved for isolated
ions that the quadrupole moment Q gives rise to a further
term scaling like qQL�3 [7]. For realistic defects in con-
densed systems, however, such corrections do not always
improve the convergence [3–5]. Figure 1 illustrates this for
the þ2 vacancy in diamond. Clearly, the Madelung cor-
rection greatly overshoots for small supercells. As a purely
empirical resort, " andQ have sometimes been regarded as
free parameters to be obtained from fitting a series of
supercell calculations [3–5]. Such ‘‘scaling laws’’ require
large supercells and invariably include higher order terms
with unclear physical significance [5]. Moreover, the L�1

and L�1 þ L�3 fits in Fig. 1 (here, L is defined as the cubic
root of the supercell volume �) highlight that the predic-

tive power of such empirical extrapolation procedures is
questionable. Alternatively, several authors have suggested
to truncate or compensate the long-range tail of the bare
Coulomb potential during the computation of the electro-
static potential itself in order to remove the unwanted
interactions [8–10]. Unfortunately, applying these schemes
to solids suffers from the neglect of polarization outside the
supercell. The corresponding error in energy is roughlyffiffiffiffiffiffiffiffiffi
�=63

p ð1� "�1Þq2L�1 [5,9]. From a comparison to Eq. (1),
we conclude that this error is larger than in the standard
approach for " > 2:8, i.e., most solids of interest.
In this Letter, we introduce a novel approach which (i) is

based on a single supercell calculation, (ii) does not rely on
fitted parameters, (iii) derives from an exact expression
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FIG. 1 (color online). Comparison of correction or extrapola-
tion schemes (see text) for the formation energy of the þ2 va-
cancy in diamond (plotted vs L�1) in various supercells. A: bcc
1� 1� 1 (32 atoms); B: simple cubic (sc) 2� 2� 2 (64);
C: fcc 4� 4� 4 (128); D: sc 3� 3� 3 (216); E: bcc 2� 2�
2 (256); F: fcc 6� 6� 6 (432); G: sc 4� 4� 4 (512). The
Fermi energy is set equal to the valence-band maximum. The
horizontal dashed line indicates the converged result according
to our new scheme.
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applying well-defined approximations, and (iv) sheds light
on the problems encountered in previous schemes. We
demonstrate the success of the new approach for two
defects that support a wide range of charge states: (1) the
Ga vacancy in GaAs (q ¼ �3 . . . 0), where the computed
formation energies vary largely in the literature as super-
cell artifacts are not treated systematically, and (2) the
vacancy in diamond (� 4 to þ2), a prime example for
the failure of existing schemes; see Fig. 1 and Ref. [4].

Our calculations are based on DFT in the local density
approximation. We employ norm-conserving pseudopo-
tentials and a plane-wave basis set (20 Ry cutoff for
GaAs, 40 Ry for C) as implemented in the SPHINX package
[11]. For the Brillouin zone, Monkhorst-Pack meshes
equivalent to at least a 4� 4� 4 sampling for the 8-
atom GaAs cell (6� 6� 6 for C) are used. The defect
levels are occupied uniformly throughout the Brillouin
zone to remove band-dispersion errors [2]. Since we aim
at a physical understanding of the electrostatic interactions,
we constrain the atoms to their ideal positions at the
theoretical lattice constant (GaAs: 10.46 bohr, C:
6.65 bohr) to exclude strain effects. In general, however,
local relaxation must be taken into account.

To arrive at a computationally accessible expression of
defect-defect interactions, we split the creation of charged
defects into three steps. Each step provides a quantity
needed for the final expression. First, the charge q is
introduced for a single defect by adding or removing
electrons from a defect state c d, while all other electrons
are frozen (no polarization). This step is associated with an
unscreened charge density

qdðrÞ ¼ qjc dðrÞj2: (2)

Next, the electrons are allowed to screen the introduced
charge. The resulting electron distribution gives rise to a
change in the electrostatic potential Vdefect with respect to
the neutral defect

Vq=0ðrÞ ¼ Vdefect;qðrÞ � Vdefect;0ðrÞ: (3)

Third, we impose artificial periodicity and add a compen-
sating homogeneous background charge n ¼ �q=� (�
being the volume of the supercell). For this last step, we
may reasonably assume a linear-response behavior. The
resulting potential then is—up to an additive constant—a
superposition of the potentials Vq=0ðrþRÞ, where R is a

lattice vector. We note that the validity of the superposition
principle is a common prerequisite of all correction
schemes. However, a direct summation of the potentials
does not converge. The divergence is removed by the
compensating background. This is most easily formulated
after a Fourier transformation to reciprocal space

Vrec
q=0ðGÞ ¼

Z
d3r0Vq=0ðr0Þe�iG�r0 : (4)

Note that the integration is over all space and converges for
arbitrary G � 0. The constant background cancels the

divergent G ¼ 0 Fourier component, while all others re-
main unchanged. The periodic defect potential is obtained
from a Fourier series

~V q=0ðrÞ ¼ 1

�

X
G�0

Vrec
q=0ðGÞeiG�r; (5)

where G runs over the reciprocal (super)lattice vectors.
Our main point here is that all defect-defect interactions
can be expressed in terms of qd, Vq=0, and ~Vq=0.

We now focus on the defect at R ¼ 0 and assume that
the unscreened defect charge qd is fully contained in the
R ¼ 0 supercell. The artificial potential due to periodic
repetition is given by ( ~Vq=0 � Vq=0), and the associated

interaction energy is

Einter ¼ 1

2

Z
�
d3r½qdðrÞ þ n�½ ~Vq=0ðrÞ � Vq=0ðrÞ�; (6)

where the prefactor 1
2 accounts for double counting and the

integral is restricted to the supercell. A further artifact, that
is not taken care of by Eq. (6), arises from the interaction of
the background charge with the defect inside the reference
supercell. It is given by

Eintra ¼
Z
�
d3rnVq=0ðrÞ ¼ �q

�
1

�

Z
�
d3rVq=0ðrÞ

�
: (7)

For practical approximations, Eqs. (6) and (7) must be
rearranged. We note that the isolated defect’s potential at
large distances jrj ! 1 is dominated by the macroscopi-
cally screened Coulomb potential

Vq=0ðrÞ ! V lr
q ðrÞ ¼ 1

"

Z
d3r0

qdðr0Þ
jr� r0j : (8)

The corresponding periodic potential ~V lr
q is obtained analo-

gous to Eq. (5). The separation

Vq=0ðrÞ ¼ Vlr
q ðrÞ þ Vsr

q=0ðrÞ (9)

defines a short-range potential Vsr
q=0, which accounts for the

variations in the microscopic screening. For the periodic
potential ~Vsr

q=0, we can directly apply the superposition

principle, i.e.,

~V sr
q=0ðrÞ ¼

X
R

Vsr
q=0ðrþRÞ þ C (10)

� Vsr
q=0ðrÞ þ C for r 2 �: (11)

The constant C is required to reproduce the absolute posi-
tion of ~Vq=0. Its value depends on the alignment convention

employed for ~Vdefect;q and ~Vlr
q=0. The simplification in

Eq. (11) applies if Vsr
d=n is essentially zero outside the

supercell.
With these ingredients, the sum of Eqs. (6) and (7) is

rearranged into two terms

Einter þ Eintra ¼ Elat
q � q�q=0; (12)
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which are the macroscopically screened lattice energy of
qd with compensating background

Elat
q ¼

Z
�
d3r

�
1

2
½qdðrÞ þ n�½ ~V lr

qðrÞ � V lr
q ðrÞ� þ nV lr

q ðrÞ
�

(13)

and an alignmentlike term, where

�q=0 ¼ 1

�

Z
�
d3rVsr

q=0ðrÞ; (14)

Vsr
q=0ðrÞ ¼ ~Vq=0ðrÞ � ~V lr

qðrÞ � C: (15)

Equations (13)–(15) are the key equations for our ap-
proach, since they allow us to explicitly calculate the
artificial interactions from ", qd, ~Vq=0, and C, which can

then be subtracted from the uncorrected formation energies
obtained from the ab initio supercell calculations.

We will now sketch out how to obtain the required
quantities in practice. For a consistent removal of supercell
artifacts in the calculation, the theoretical value of " must
be used. It may be computed from density-functional
perturbation theory [12] or from the response to a finite
sawtooth potential [13]. Following the latter approach, we
obtain values of 12.4 for GaAs and 5.7 for C. The sawtooth
approach also allowed us to verify that the response re-
mains in the linear regime for magnitudes of the potential
well beyond those induced by defects. For qd, it turns out
that any reasonable approximation to the defect charge
distribution suffices since the sum of lattice energy and
alignment correction is not sensitive to the details of qd.
The simplest approximations are a point charge or a
Gaussian, and they indeed prove to be sufficient for most
cases. Once a model for qd is chosen, the lattice energy is
easily obtained via Ewald summation. For point charges,
we then recover the leading term of previous correction
schemes [6,7]. ~Vq=0 is available directly from the DFT

supercell calculations. Without loss of generality, we
may even switch our reference from the neutral defect to
the perfect bulk material

~V q=b ¼ ~Vdefect;q � ~Vbulk; (16)

~V sr
q=b ¼ ~Vsr

q=0 þ ~Vdefect;0 � ~Vbulk; (17)

exploiting that a neutral defect has no long-range Coulomb
potential. �q=b is defined analogous to Eq. (14). Changing

the reference, we also change the alignment C.
To determine the alignment constant C, we require that

the short-range potential Vsr
d=b decays to zero far from the

defect. In practice, we average the potentials in the xy
planes and plot this average as a function of z. Figure 2
illustrates this for the Ga vacancy (q ¼ �3) in a 3� 3� 3
simple cubic GaAs supercell. The vacancy is located at z ¼
0 with a periodic image at 3a0 ¼ 31:38 bohr. qd is ap-
proximated by a Gaussian with a width of 1 bohr. Far from
the defect, ~Vq=b (solid line) assumes a parabolic shape.

This is well reproduced by ~V lr
d (dashed-dotted line). The

parabola arises from the homogeneous background, being
the solution of the one-dimensional Poisson equation for
the xy-averaged �VðzÞ

@2

@z2
�VðzÞ ¼ �4�n: (18)

The difference ( ~Vq=b � ~V lr
q) (dashed line) reaches a plateau

C � 0:03 eV (thin dashed line) between the defects. The
appearance of the plateau demonstrates that our approach
successfully separated the long-range and short-range ef-
fects. This visual control of short-rangedness is a big
advantage of our procedure, since problems in modeling
the long-range potential are immediately detected. We also
note that the small oscillations around the plateau are not
linked to the atomic structure but reflect Friedel-like oscil-
lations of the microscopic screening. Since we do not
include them in our electrostatic models, they are the
main source of scatter in the corrected energies presented
here. We likewise expect that a Taylor series of these
oscillating electrostatic interactions in L�n (the ‘‘scaling
law’’ approach) will converge only slowly with the number
of terms.
To demonstrate the reliability of our new correction

scheme for arbitrarily shaped supercells, we present in
Fig. 3 the formation energy [2,14]

EfðVq
GaÞ ¼ EðVq

Ga þ bulkÞ � EðbulkÞ þ EðGaÞ þ�Ga

� Elat
q þ qðEF þ �q=bÞ (19)

of the unrelaxed Ga vacancy Vq
Ga in various charge states

for a set of N1 � N2 � N3 supercells of the 8-atom sc cell.
The Fermi energy EF is set equal to the valence-band
maximum and the Ga chemical potential �Ga to that of
Ga metal. Using a point-charge model qd (the results are
the same for a 1 bohr Gaussian), the ab initio corrected
formation energies of all calculations above 2� 2� 2
agree within 0.1 eV without any empirical fit.
Interestingly, the magnitude of the scatter does not scale
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FIG. 2. Electrostatic potentials (see text, averaged along x; y)
for V3�

Ga in a 3� 3� 3 simple cubic GaAs supercell. The defect

is located at z ¼ 0 bohr with a periodic image at z ¼
31:38 bohr.
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with the formal charge, suggesting that the remaining
errors are not dominated by long-range electrostatic effects
(which scale as q2).

A point-charge model for qd is equivalent to Makov-
Payne corrections and scaling laws for sufficiently large
supercells, since the lattice energy then scales like L�1 and
the alignment term like L�3. We will now analyze a case
where these previous schemes fail to provide a converged
result (see Fig. 1): the þ2 charged vacancy in diamond.
This defect was shown to have an unusual supercell de-
pendence up to 432 atoms [4] (much smaller or even of
opposite sign compared to the point-charge expectations),
a result confirmed in our calculations up to 512 atoms. The
authors of Ref. [4] suggested that variations in the local
screening may be responsible. In contrast, we argue that
the effect results from a slow decay of the underlying
defect state. Indeed, a point-charge model overcorrects
the potential in the intermediate range [15], which be-
comes evident from the corresponding ~Vsr

q=b (not shown).

In order to improve the description of V lr
q , we employ a

more elaborate model charge density qd, which takes into
account the charge distribution associated with the defect
state’s wave function c d. For this, we decompose the jc dj2
into an exponentially decaying and a strictly localized
contribution qloc

jc dðrÞj2 � xð8��3Þ�1e���1jr�r0j þ qlocðrÞ; (20)

where x and the decay length � are obtained by fitting the
tail of jc dj2. r0 denotes the center of the defect. While x
varies little for the different charge states (54%–60%), �
depends on the position of the defect level in the band gap.
When approaching the valence or conduction band, the
decay length increases. Since the exact shape of qloc has
negligible influence on the long-range potential, we sub-
stitute it by a Gaussian (� ¼ 1 bohr) and use

qdðrÞ¼qxN�1
� e�jr�r0j=�þqð1�xÞN�1

� e�jr�r0j2=�2
(21)

with q-specific x and � (N� ¼ 8��3, N� ¼ �3=2�3).

Figure 1 shows that this refined model density performs
very well for supercells with 216 or more atoms. The
discrepancies for smaller cells must be attributed to
short-range interactions and the significant overlap of the
defect wave functions. Test calculations [16] confirm that
the scheme is applicable equally for q ¼ þ2 . . .� 4 [15].
In summary, we have analyzed electrostatic interactions

between defects in the supercell approach. In contrast to
previous work, an explicit expression for the L�3 term in
condensed matter is derived. We propose a new correction
scheme, which is easily implemented in existing codes, is
accurate, and requires no empirical parameters or fitting
procedures. Moreover, the validity of the underlying as-
sumptions can be directly assessed. We strongly believe
that this simple and transparent scheme will reduce the
uncertainties of calculated defect formation energies due to
the use of finite supercells and approximate correction
schemes. Furthermore, our three-step ansatz can be applied
to similar problems in more complex systems, such as
charged surfaces, interfaces, or line defects.
We thank Peter Blöchl and Mira Todorova for fruitful

discussions. This work was supported in part by the
German Bundesministerium für Bildung und Forschung,
Project No. 03X0512G, the NSF MRSEC Program under
Grant No. DMR05-20415, the IMI Program of the NSF
under Grant No. DMR04-09848, and the UCSB-MPG
Program for International Exchange in Materials Science.

[1] E. G. Seebauer and M.C. Kratzer, Mater. Sci. Eng., R 55,
57 (2006).

[2] C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95,
3851 (2004).
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FIG. 3. Defect formation energies of the Ga vacancy in GaAs
including supercell corrections as a function of the inverse
number of atoms. The Fermi energy is set equal to the
valence-band maximum and the Ga chemical potential to that
of Ga metal.
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