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A supercooled liquid generally exhibits marked shear-thinning behavior, but its detailed mechanism

remains elusive. Here we study the dynamics of structural rearrangements in supercooled liquids under

shear, using two-dimensional (2D) molecular dynamics simulation. To elucidate the relationship between

heterogeneous dynamics and the rheological behavior, we extend the four-point correlation function,

which has been used for analyzing ‘‘dynamic heterogenity’’ in a quiescent condition, to a system under

steady shear. In the Newtonian regime, the rearrangement dynamics is strongly heterogeneous in space,

but remains isotropic. Contrary to this, in the non-Newtonian regime, where marked shear-thinning

behavior appears, we find a novel dynamic effect: The mobile region tends to form anisotropic ‘‘fluidized

bands.’’ This finding suggests a link between nonlinear rheology and inhomogeneization of flow.
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Nonequilibrium dynamics of supercooled liquids and
glasses [1,2], particularly, glassy dynamics under shear
[3], has been extensively investigated from both fundamen-
tal and applications viewpoints. As observed in many
complex fluids such as polymer solutions and colloidal
suspensions [4], marked shear-thinning behavior is also
seen in a glass-forming liquid. In numerical simulations
of supercooled liquids [5–9], the shear viscosity � and the
�-relaxation time �� are found to decrease with increasing
the shear rate _� as � / �� � _��� with � & 1. One of the
most intriguing findings is that despite such a distinct
shear-thinning behavior, the structure and its relaxation
dynamics captured via the two-body correlation function
hardly show any anisotropy [5,6], which was also sup-
ported by theoretical analysis based on mode coupling
theory (MCT) [6,10,11] and experiments [12]. This makes
a marked contrast to usual complex fluids, in which non-
Newtonian behavior is associated with shear-induced an-
isotropy or structural change [4,13,14]. The origin of this
difference is not at all clear. There are two possibilities:
(i) There is an intrinsic difference in the origin of the
nonlinear rheology between glass-forming liquids and
complex fluids; (ii) something is amiss in the above argu-
ment. Here we aim at answering this fundamental question.

The static structure factor of a glass-forming liquid
exhibits little change across the glass transition, which
apparently suggests the absence of a mesoscopic structure
(or order) coupled with shear and thus seems to support the
above possibility (i). However, the existence of ‘‘dynamic
heterogeneity’’ has recently been established by experi-
ments [15,16] and simulations [5,17–20]: In a supercooled
liquid, some regions temporally contain more mobile par-
ticles, whereas the other regions contain more immobile
particles. It was reported that there exist dynamically
correlated structures [5,18,19,21]. Natural questions to be
raised are ‘‘does such a correlated structure associated with
dynamic heterogeneity become anisotropic under shear

flow?’’ and, then, ‘‘is it responsible for non-Newtonian
behavior?’’ A previous simulation study [5] showed that
a snapshot of such dynamically correlated structures under
steady shear flow does not exhibit any obvious anisotropy;
however, there is a possibility that shear-induced structures
are washed out by thermal fluctuations even if they exist.
Recent experiments [12,22] showed the existence of a large
scale ‘‘fluidized’’ band or a conspicuous nonaffine shear
deformation flow for glasses under shear. Although these
experiments were made for glasses and not for supercooled
liquids, similar behavior may be observed in sheared super-
cooled liquids. To seek such a possibility, here we system-
atically reinvestigate the structural rearrangement dynam-
ics in sheared supercooled liquids, focusing on how dy-
namic heterogeneity responds to shear flow.
We used a 2D model liquid, which is a mixture of two

atomic species, A and B with NA ¼ NB ¼ 104. The parti-
cles interact via a soft-core potential vijðrÞ ¼ �ð�ij=rÞ12
with �ij ¼ ð�i þ �jÞ=2, where r is the distance between

two particles, �i is the particle size, and i, j ¼ A, B. The
interaction was truncated at r ¼ 4:5�A. The mass and size
ratios are mB=mA ¼ 2 and �B=�A ¼ 1:4, respectively. We
fixed the particle number density at a value of � ¼ ðNA þ
NBÞ=V ¼ 0:8=�2

A, where V is the system volume (V ¼ L2;
L ¼ 158:1�A). Space and time were scaled by �A and

�0 ¼ ðmA�
2
A=�Þ1=2. We performed the time integration of

the SLLOD equations of motion using the Lee-Edwards
boundary condition, and the temperature of the system was
maintained by the Gaussian constraint thermostat. Here we
set the x axis along the flow direction and the y axis along
the velocity gradient direction. Under homogeneous shear
the mean velocity profile is given by hvi ¼ _�yx̂, where x̂ is
the unit vector along the x axis [23].
In this Letter, dynamic heterogeneity and the associated

correlated dynamics are quantified by extending the four-
point correlation function introduced in [20] to a system
under steady shear flow: A time-dependent ‘‘order parame-

PRL 102, 016001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

9 JANUARY 2009

0031-9007=09=102(1)=016001(4) 016001-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.016001


ter’’ is given byQðtÞ ¼ R
dr1dr2�ðr1; 0Þ�ðr2; tÞw12, where

�ðr; tÞ ¼ P
N
i¼1 	ðr� riðtÞÞ is the density. A position r1 ¼

ðx1; y1Þ on the reference frame at t ¼ 0 moves to r1 þ
_�ty1x̂ at a time t by the mean shear flow, and so the
‘‘overlap’’ function under steady shear flow should be
defined as w12 ¼ wðjr2 � r1 � _�ty1x̂jÞ, where wðjrjÞ ¼ 1
(0) for jrj< 0:3ð>0:3Þ. The mean square variance of the
order parameter measures the degree of the cooperativity
of structural relaxation: 
4ðtÞ¼ ð�V=kBTN2Þ½hQ2ðtÞi �
hQðtÞi2�. It can be written in the form of spatial integration

as 
4ðtÞ ¼ ð�V=kBTN2ÞR dr ~G4ðr; tÞ, where ~G4ðr; tÞ ¼P
i;j;k;lh	ðrþ rið0Þ � rkð0ÞÞwijwkli � hQðtÞi2. Its Fourier

transformation yields the following structure factor

S4ðk; tÞ ¼ ð�=kBTN�Þh~�ðk; tÞ~�ð�k; tÞi, where ~�ðk; tÞ ¼
1=N

P
i;je

ik�rið0Þwij. ~G4ðr; tÞ [or S4ðk; tÞ] itself does not

exhibit any anisotropy unless the deviatric motion becomes
anisotropic.

Figure 1(a) shows the intermediate scattering func-
tion (self-part) for A particles, Fsðk0; tÞ ¼ 1=

NA

PNA

i¼1he�i½ðk0� _�tk0xŷÞ�riðtÞ�k0�rið0Þ�i, where jk0j ¼ 2�. As
was already shown in [5,6], we can hardly see any angular
dependence in Fsðk0; tÞ even under shear flow. This means
that the relaxation dynamics is almost isotropic at least in
the two-body correlation function. We define the
�-relaxation time ��ð _�Þ as Fsðk0; ��ð _�ÞÞ � e�1. In Figs. 1
(c) and 1(d), we show the order parameter hQðtÞ=Ni and its
mean square variance 
4ðtÞ, respectively. With increasing
_� both the dynamic scattering function and the order pa-
rameter decay faster, and the peak of 
4ðtÞ at t ¼ �
ð _�Þ
becomes lower. Note that although �
ð _�Þ and ��ð _�Þ are not
so different in our simulation study, the decrease in _� leads
to a slight increase in �
ð _�Þ=��ð _�Þ. We also plot the

sample-averaged shear stress h�xyðtÞi ¼ 1=2
PN

i¼1 �P
i�jhð@vij=@xiÞyiji in Fig. 1(b) for several shear rates. It

is worth mentioning that h�xyðtÞi exhibits overshoot be-

havior at t� �
ð _�Þ, instead of at t� �
ð _� ¼ 0Þ [5].

The observed isotropy of Fsðk0; tÞ has been regarded as
supporting evidence for the validity of the concept of the
‘‘effective temperature’’ [7]: A sheared supercooled liquid
can be effectively mapped onto the high temperature state
without shear flow. Such a concept is attractive since it
might open a possibility of the generalized fluctuation-
dissipation relation under a nonequilibrium situation.
However, we will show below that the dynamic structure
of a supercooled liquid becomes strongly anisotropic and
heterogeneous under shear.
Figure 2 shows typical snapshots of the deviatric dis-

placement vector field defined by 	UðrJ;�tÞ �
1=NJ

P
i2VJ

	uið�tÞ, where 	uið�tÞ ¼ ½riðtþ �tÞ �
riðtÞ � _��tyiðtÞx̂�, and the summation is taken over parti-
cles whose center of masses belong to a square area
element VJ (linear size: 1:76�A) located at rJ. Here NJ is
the number of particles belonging to VJ. At _� ¼ 0, a
mobile region is heterogeneously localized and the dis-
placement vector is randomly oriented. On the contrary,
under shear flow, several interesting dynamical effects can
be seen: The dynamics is not only highly heterogeneous,
but also anisotropic: a mobile region tends to form a
‘‘fluidized band’’ along either x or y direction. The ob-
served anisotropy appears as the cross-shaped pattern in
the structure factor of the local deviatric displacement vec-
tor, Suðk;�tÞ¼ h	ukð�tÞ �	u�kð�tÞi=h	u2i [Fig. 2(c)],

where 	ukð�tÞ ¼ 1=
ffiffiffiffi
N

p P
N
i¼1 	uið�tÞeik�riðtÞ, and h	u2i ¼

1=N
P

ih	uið�tÞ2i [24]. The shear stress acting on the
system under a simple shear flow is illustrated by the red
arrows in Fig. 2(c). As can be seen from this, the x and y
directions are equivalent for band formation, which leads
to the equal frequency of appearance of bands along the
two axes. However, if we set solid boundaries at y ¼ L=2
and y ¼ �L=2, which is an ordinary experimental con-
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FIG. 1 (color online). (a) Fsðk0; tÞ, (b) h�xyðtÞi, (c) hQðtÞ=Ni,
and (d) 
4ðtÞ for several shear rates at kBT=� ¼ 0:526.

FIG. 2 (color online). Snapshots of 	UðrJ;�tÞ for various _� at
kBT=� ¼ 0:526. Note that another definition, 	 ~UðrJ;�tÞ �
1=Nj

P
i2VJ

½rið�tÞ � rið0Þ �
R
�t
0 dt0 _�yiðt0Þx̂�, gives almost the

same spatial structure as 	UðrJ;�tÞ for the present �t.
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figuration, the growth of fluidized-bands along the y axis
should be suppressed.

The temporal growth of anisotropic bands can be seen in
the time evolution of S4ðk;�tÞ at _� ¼ 0:001 [Fig. 3(a)].
For a shorter time t & �
ð���Þ, in which a particle is

trapped in its ‘‘cage’’, random thermal forces overwhelm
externally applied forces, resulting in the isotropic pattern
of S4ðk;�tÞ. For a longer time t * �
, on the other hand,

shear-induced cage breaking occurs cooperatively in either
x or y direction, resulting in the cross-shaped pattern of
S4ðk;�tÞ or Suðk;�tÞ. This suggests a link between the
stress overshoot behavior [Fig. 1(b)] and the inhomogene-
ization of flow. The novel four-point correlation analysis
developed by Flenner and Szamel revealed correlated di-
rectional motion even in the absense of shear flow [25].
Figure 3(a) may be viewed as a dynamic process in which
such directional but randomly oriented motion is organized
into anisotropic coherent motion under shear. Figure 3(b)
shows several particle trajectories for the immobile (left)
and the mobile region (right). For a shorter time (t & �
),

the rattling motion of a particle in its cage is dominant in
both mobile and immobile regions. For a longer time (t *

�
), on the other hand, we can see distinct directional

motion along the y axis in the fluidized mobile region.
It is worth noting here that the nonaffine nature of

deformation increases with decreasing _�. For sufficiently
small shear rates _� & 0:001 (kBT=� ¼ 0:526) the aniso-
tropic external disturbance becomes so weak that the life-
time of the correlated dynamics becomes long enough for
‘‘bands’’ to extend across the system. Recent experiments
on a sheared glass suggest that the localization of a fluid-
ized region becomes more pronounced for a weaker shear
rate [12]. This is qualitatively consistent with our result,

although the experiments are made for a glass (not a super-
cooled liquid). We note that fluidized bands are not perma-
nent, but disappear after a certain time, and then reappear:
They are spatiotemporally fluctuating. Under steady shear
flow, thus, such self-organization and self-collapsing pro-
cesses are repeated over and over as in turbulence [26].
Now we focus on a link between the above-described

anisotropic cooperative dynamics and the non-Newtonian
behavior of a supercooled liquid. In Fig. 4, we show the
_�-dependence of the steady-state shear viscosity �ð _�Þ (a)
and the spatial correlation of the displacement field (b). In
the linear (Newtonian) regime, rearrangement dynamics is
almost isotropic. On the other hand, in the nonlinear (non-
Newtonian) regime, where marked shear-thinning behav-
ior (�� _��0:8) appears, the anisotropy becomes conspicu-
ous in the cooperative dynamics. We note that the shear-
thinning behavior starts at a shear rate much lower than that
expected fromMCT scenario [6,10,11], _� ¼ 1=��ð _� ¼ 0Þ.
For kBT=� ¼ 0:526, for example, the shear thinning starts
at _�c � 10�6, but 1=�� ¼ 10�4 � 10�3. This suggests that
there may be a structural relaxation process much slower
than �� characterizing the decay of the two-body correla-
tion. We speculate that the characteristic time 1= _�c may
mark the lifetime of long-lived immobile structures, which
indeed keep their internal particle configurations for a time
much longer than �� [see Fig. 2(a)]. The origin of such
immobile structures, structural order [21] or something
else, remains the subject for future study.
Next we investigate the correlation between the ‘‘mo-

bility’’ of particles and the shear stress born by them. In
athermal systems a negative correlation between particle
mobility and local shear stress can be easily seen even in
snapshots of velocity and stress fields (see, e.g., [9,27–29]),
whereas in thermal systems such a correlation is almost
completely masked by thermal fluctuations [5]. Here we
demonstrate that statistical averaging removes thermal
fluctuations and thus reveals such a mobility dependence.
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The shear stress acting on particle i at time t can be
obtained as �xy

i ðtÞ ¼ P
j�ið@vij=@xiÞyij, where rij ¼ ri �

rj. In Fig. 5(a), we plot the shear stress averaged during a

time interval �t ¼ �
, �
xy
i ð�tÞ ¼ 1=�thR�t

0 dt�xy
i ðtÞi, as a

function of the square root of the deviatric displacement,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	u2i ð�tÞ

q
. We can see that less mobile particles can sustain

more shear stress, but for relatively mobile particles

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	u2i ð�tÞ

q
* 0:3) �xy

i ð�tÞ decays gradually. Figure 5(b),

on the other hand, shows that �xy
i ð�tÞ for different �t’s.

With increasing �t, the distribution function f asymp-
totically approaches a Gaussian and the ‘‘mobility’’ de-
pendence of �xy

i ð�tÞ becomes weaker. This is because

long-time averaging (�t � �
) makes the mobility of

each particle and the resultant �xy
i ð�tÞ homogeneous

[lim�t!1�
xy
i ð�tÞ¼2h�xyi=�, the dashed line in Fig. 5(b)].

To sum, contrary to a common belief, we demonstrated
that in the nonlinear regime a supercooled liquid under
shear exhibits anisotropic cooperative structural rearrange-
ments, which can be seen by the four-point correlator but
not by the two-point correlator. Our finding calls for further
improvement or modification of the present mean-field
picture and the concept of the effective temperature for a
sheared glassy liquid, where the shear field is treated as an
isotropic perturbation. Finally, according to our prelimi-
nary 3D simulations, the basic features of our 2D results
are retained in 3D: The particle diffusivity is more en-
hanced (equally) in the x (flow) and y (shear) directions
than in the z (vorticity) direction under shear flow, resulting

in a cross-shaped pattern of Suðk;�tÞ on the kx � ky plane

in the non-Newtonian regime [30].
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peak
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f, which approaches the Gaussian

indicated by the purple dotted curve with increasing �t, as a
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