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Percolation Model for Slow Dynamics in Glass-Forming Materials
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We identify a link between the glass transition and percolation of regions of mobility in configuration
space. We find that many hallmarks of glassy dynamics, for example, stretched-exponential response
functions and a diverging structural relaxation time, are consequences of the critical properties of mean-
field percolation. Specific predictions of the percolation model include the range of possible stretching
exponents 1/3 = B = 1 and the functional dependence of the structural relaxation time 7, and exponent

B on temperature, density, and wave number.
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As temperature is decreased near the glass transition, the
structural relaxation time in glassy materials increases by
many orders of magnitude with only subtle changes in
static correlations [1]. In addition, structural correlations
display an anomalous stretched-exponential time decay
exp(—t/7,)P, where B is the stretching exponent and 7,
the a-relaxation time. Understanding the origin of this
behavior is one of the most important outstanding prob-
lems in statistical physics.

Although stretched-exponential relaxation is common to
many glass-forming materials, the dependence of 7, and 8
on temperature and density is not universal. For molecular,
colloidal and polymer glasses, where structural relaxation
is measured using density autocorrelation functions, the
temperature dependence of 7, is affected by the fragility
[2]. In magnetic glasses, where structural relaxation is
measured using spin autocorrelation functions, 7, depends
on details of the microscopic interactions [3]. In all glassy
systems, the stretching exponent 3 varies between 1/3 and
1 depending on the scattering wave vector, density and
temperature, and its dependence on these variables is not
universal [4].

How do we understand structural relaxation in glass-
forming materials where correlation functions display
stretched-exponential relaxation, but the temperature and
density dependence of 7, and 8 vary from one material to
the next? Contrary to approaches that focus on heteroge-
neous dynamics [5] and percolation [6] in real space, we
study how properties of energy landscapes [7] affect dy-
namics in configuration space. In this picture, activation
from energy minima is rare at low temperatures, and only
infrequent hopping between minima allows structural cor-
relations to decay [8].

We focus on the connection between anomalously slow
dynamics in glass-forming materials and percolation of
regions of mobility in configuration space. The decay of
structural correlations over a time ¢ is related to the average
distance that the system moves in configuration space
during that time. Thus complete relaxation—decay of
structural correlations to zero—only occurs after the sys-
tem can diffuse over a path that percolates configuration
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space. We demonstrate that a percolation transition in
configuration space is responsible for several hallmarks
of glassy dynamics: (i) stretched-exponential relaxation
of structural correlations and the experimentally observed
range of values and wave-number dependence of the
stretching exponent 3; (ii) the form of the divergence of
T, and (iii) a diverging length scale near the glass-
jamming transition for hard spheres.

Hard spheres.—We first consider collections of hard
spheres that interact at contact with an infinite repulsion.
At moderate density, hard spheres behave as simple fluids.
As density increases structural relaxation becomes anom-
alously slow. Upon further compression, if crystallization
is avoided, the system becomes confined to an amorphous
collectively jammed [9] (CJ) state at packing fraction ¢;.
In CIJ states any single or collective particle displacement
causes particle overlap; thus, because of the hard-sphere
contraints, no motion is possible at ¢ ;. For large systems,
ClJ states occur at a single ¢, with ¢; = 0.64 for mono-
disperse systems in d = 3 dimensions and ¢; = 0.84 for
bidisperse mixtures with d = 2 [10,11].

The transition from glass to liquid in disordered hard-
sphere systems can be understood as the percolation of
“allowed” regions in configuration space that do not vio-
late hard-sphere constraints: at ¢ = ¢; only CJ states
(points in configuration space) are allowed; for ¢ < ¢,
allowed regions do not percolate and relaxation is limited;
for ¢ < ¢p a percolating network of allowed regions
spans configuration space and the system can fully relax.
Critical properties of the percolation transition do not
depend on how allowed regions of configuration space
are partitioned. However, to use the predictions of contin-
uum percolation, it is useful to partition allowed regions
into mobility domains, each of which is associated with
a single CJ state. For any ¢, the mobility domains can
be identified by compressing each allowable configuration,
specified by its particle positions {r;}, to ¢, using
the Lubachevsky-Stillinger algorithm [12] in the large
compression rate limit. The point in configuration space
{r;} belongs to the mobility domain of the resulting CJ
state.
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FIG. 1 (color online). Schematic of allowed regions in con-
figuration space for hard spheres. (a) At ¢; only CJ states
(points) are allowed; (b) At ¢ < ¢, motion occurs in closed
mobility domains surrounding CJ states; (c) At ¢, < ¢, tran-
sitions between contacting mobility domains (shaded) occur;
(d) At ¢p < ¢, at least one network of mobility domains

percolates (shaded yellow) and the system transitions from glass
to metastable liquid.

The glass transition can now be described in terms of
percolation of mobility domains. At ¢; the system is
confined to one of many possible CJ states and no motion
occurs [Fig. 1(a)]. For ¢ < ¢, a closed mobility domain
of allowed hard-sphere configurations surrounds each CJ
state [9] [Fig. 1(b)]. For smaller ¢» mobility domains of
different CJ states can contact, which enables the system to
transition from one mobility domain to another
[Fig. 1(c)]. The system will diffuse on a network of mo-
bility domains if many are in contact. At lower ¢, a
percolating cluster of mobility domains forms [Fig. 1(d)].

Structural relaxation in dense hard-sphere systems oc-
curs via dynamical heterogeneities [13], and thus shapes of
mobility domains are complex. Near CJ states mobility
domains are roughly hyperspherical and quickly explored.
Further from CJ states mobility domains become filamen-
tary, and the time needed to explore these regions via
cooperative motion is large. However, in our calculations,
we assume there exists an upper critical dimension D* of
configuration space, above which mean-field theory accu-
rately describes critical exponents of the percolation tran-
sition. In this limit, the complex geometry and correlations
of mobility domains can be ignored. We focus on large
system sizes N, where the dimension of configuration
space dN > D", and construct a mean-field theory in terms
of the packing fraction of mobility domains II in configu-
ration space. Percolation occurs at a critical value 11, and
is controlled by mean-field exponents [14]. To derive
stretched-exponential relaxation, our mean-field approach
does not require detailed information about the filamentary
features of mobility domains.

We quantify structural relaxation using the incoherent
part of the intermediate scattering function (ISF) ®,(z) =
N~! Z;V:I explig - A7;(t)], where A7;(z) is the displace-
ment of particle j over time ¢ and ¢ is the scattering
wave vector [15]. The ISF is well characterized by its
Gaussian approximation [16],

(1) = exp( — ¢*Ar*(1)/2d), (1)
where Ar*(r) = N"' XN [7,(1) — F(0)]* is the mean-

square displacement. Note that NAr%(¢) is identical to the
mean-square distance traveled in configuration space after
time 7. The infinite-time value of the ISF f; = ®;(o0) is an
order parameter for the glass transition that is zero for a
liquid and positive for a glass.

The percolation model predicts a glass for IT < I, and
a metastable liquid for IT > II . For IT < Il no percolat-
ing cluster of mobility domains exists, f; >0, and the
system is a glass since the maximum distance it can diffuse
in configuration space is finite, set by the percolation
correlation length & o« (I1, — I1)~'/2. In the glass state,
Eq. (1) predicts logf; o« —g?¢* o« —¢*(Il, — II)~'. For
IT > I, at least one cluster percolates and f; = 0. Since
percolating clusters are fractal and cover only a small
fraction of configuration space, the state with f; = 0 is
not necessarily ergodic.

The time dependence of the ISF can be determined from
dynamics in configuration space using Eq. (1). The model
contains two important time scales: short times where the
system is confined to a single mobility domain and long
times where the system diffuses on a connected cluster of
mobility domains. Short-time dynamics are characterized
by the average transition time 7, between mobility do-
mains, while longtime relaxation of the ISF is determined
by diffusion on a network of mobility domains. The mean-
square distance Ar%(t) traveled on networks near the mean-
field percolation transition has been studied extensively
[17,18] and obeys the scaling form

AP (f) o« (t/70)3GLE2(t/79) 3], @)

where & « (IT — I1,)~'/2 and the scaling function G[z] =
Z2forz> 1and G[z] =1 forz < 1.

The structural relaxation time 7, and stretching expo-
nent B can be determined when a percolating network
exists. If we define ®;(7,) = ¢!, Egs. (1) and (2) give

;oo {Toq_z(H = Ip)~2
“ Toq°

for ¢¢é < 1,

for g& > 1. )

Note that there are two contributions to 7,: (1) the average
transition time between mobility domains 7, and (2) the
time scale for diffusion on percolating networks that is
proportional to (IT — II)~2. The ¢ dependence in Eq. (3)
is consistent with experiments on dense colloidal suspen-
sions [16] and vibrated granular materials [19]. Since
Ar%(1) from Eq. (2) crosses over from anomalous diffusion
o 1/3 at small times to normal diffusion o 7 at large times,
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Eq. (1) predicts that 8 varies with time and satisfies 1/3 =
B = 1. In experiments, S is typically measured by fitting
the ISF to exp(t/7,)? near 7,, and thus its time depen-
dence has not been observed. Near 7, Egs. (1) and (2)
predict that 8 only depends on ¢¢ with 8 = 1/3 for g¢& >
1 and B = 1 for ¢¢ < 1. These limiting values have been
observed in experiments [19].

Thus far we have used results from mean-field percola-
tion to obtain stretched-exponential relaxation. To make
further connections with experiment, we will determine 7,
versus ¢. This requires that we first express Il and 7 in
terms of ¢ (I and ii below), and calculate the packing
fraction ¢p at which the glass transition occurs (iii).
(1) II is equal to the number of CJ states Nc; multiplied
by the average volume V of the mobility domains (normal-
ized by the total volume LV9). Ny = N'e®V, where a > 0
is a constant [20,21]. V is determined by the total free
volume v, accessible to the system in real space and,
assuming that all allowed regions (including filaments) in
configuration space are explored, V'/N = v,/L? = (¢, —
@)/ ;. Thus for large N

IT o NY(1 = /)N )

(ii) 7o « N!, where N, is the average number of mobility
domains in contact with a single domain [22]. Assuming a
random distribution of hyperspherical domains

751 o N, = 24NT1. (5)

For large N, 7o % 2 INTTI~! o exp[Ad,/(d;, — ¢)] [23].
(iii) ¢p can be determined from Eq. (4) by solving 11, o
NN(1 — ¢p/p;)N. Using mean-field percolation results
[14], percolation in configuration space occurs when N, =
z/(z — 1), where z is the maximum number of mobility
domains that can contact a single domain. Since z increases
with N, we predict 11, =279 and thus (¢, — ¢p) =
N~!. Note that ¢pp < ¢, for finite N whereas ¢p = ¢,
as N — oo. This system-size dependence suggests a diverg-
ing length scale ¢ in real space: since relaxation only
occurs in subsystems of size N ~ ¢¢ where ¢p(N) >
¢, then € = (¢p; — ¢p)~ V4. A diverging length with the
predicted exponent has been reported in experiments on
granular media [24]. Using Eq. (3)—(5), the asymptotic
form of 7, near ¢p is

o [explg 25N e — 0) 2 for g — b < by~ ¢

“ |expl 2] for ¢p— &> b, = dp,
(6)

for g¢ < 1, where A and B are positive constants. For
N — o when ¢p = ¢, the model predicts a Vogel-
Fulcher divergence at ¢;. In this limit, the functional
form and location of the divergence have been verified in
experiments of hard spheres [19,25]. For finite N when
¢p < ¢, there is a power-law divergence near ¢p and
Vogel-Fulcher behavior far from ¢p.

Finite energy barriers.—In contrast to hard spheres,
activation is important in systems with finite energy bar-

riers. We now extend the percolation model to include
activated processes in systems at constant temperature T
(with kg = 1). We again assume that only disordered states
exist, as in frustrated geometries such as the pyrochlore
lattice, polydisperse colloidal suspensions, and metallic
glasses above the critical quench rate.

For systems with finite energy barriers, the transition
from glass to metastable liquid is described by the perco-
lation of bonds between local energy minima. Con-
figuration space can be decomposed into basins of attrac-
tion surrounding each local minimum, and every point in
configuration space can be mapped uniquely to a single
basin [26]. At short times the system is confined to a basin,
whereas at long times it hops from one basin to another.
Complete structural relaxation occurs once the system’s
trajectory percolates configuration space.

To calculate 7,, we specify the ensemble of bond-
percolating networks on which the system can relax and
select the subset that minimizes 7,. To build the ensemble,
we prescribe a maximum energy barrier height n7 and
draw bonds between minima with barriers below n7. If
one of the networks formed in this manner percolates, it is
included in the ensemble. For a given value of n, the
fraction of bonds b(n) and the average time 7((n) to
make transitions between two basins are given by

b(n) = ﬁ " P,(E)E, %)

nT
ro(n) = b(n)~! jo Py(E)exp(E/T)dE,  (8)

where P,(E) is the distribution of energy barriers. For
sufficiently large N, we can describe the properties of the
percolating networks using a mean-field description. For
any n, a percolating network exists if b(n) is larger than a
critical value bp, and the a-relaxation time is

o [7o(mg™?[b(n) — bp]™* for g€ < 1,
Taln) {Tg(n)tf6 ! for g& > 1,

using arguments similar to those given for Eq. (3). Note
that there are a range of relaxation times 7,(n), depending
on n. For large N a saddle-point approximation holds and
the system selects the n* that minimizes 7,,(n). Minimizing
Eq. (9) for g¢ < 1 gives
b(n*) —bp _ 2
b(n*) Ce" [1y(n*) — 1’
where C is the proportionality constant from Eq. (8) with
units of time. Equation (10) can be solved to determine n*
[27]. Since Ce™ > 1y(n*) for all T > 0, Eq. (10) predicts
that b(n*) > bp, and thus no glass transition occurs for 7' >
0. The T dependence of 7,(n*) depends sensitively on
P,(E). If we assume a Gaussian-shaped P,(E), we recover
experimentally observed glassy behavior, including fragile
(strong) behavior for large (small) standard deviation rela-
tive to the average energy barrier height.
As for hard spheres, the percolation model for finite
barriers predicts that structural correlations such as the

(©))

(10)
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ISF or spin correlations exhibit stretched-exponential re-
laxation with 1/3 = B8 = 1. These limits for 8 agree with
experimental values for many glass-forming materials [4].
We predict that 8 increases slowly with time, but if it is
measured near 7, we expect 8 = 1/3forgé > land B =
1 for g¢ < 1, where & o [b(n*) — bp]~'/2. Our results for
the limiting values of B are consistent with measurements
at different ¢ values in Lennard-Jones [28] and magnetic
[29,30] glasses and different g values in magnetic [31] and
molecular [32] glasses.

Equations (7)-(10) can be applied to hard-sphere sys-
tems to determine 7,(¢) even far from ¢ p, where details
of filamentary regions of mobility domains are important,
if we generalize the assumption used to derive Eq. (4).
Instead of energy barriers, hard spheres overcome entropic
barriers to explore filamentary regions. If a fraction f of the
mobility domain hypervolume V is explored before mak-
ing a transition to a new mobility domain, there is an
average transition time 7,(f) and a corresponding perco-
lating network with bond fraction b(f) o« f1I. For N — oo,
the system will choose the f* that minimizes 7,. Equation
(4) was derived assuming f* = 1, which holds near ¢p.
For ¢ < ¢p, f* < 1 and only the hyperspherical regions
of mobility domains are explored. Glassy behavior begins
when f* becomes sufficiently large that filamentary re-
gions of mobility domains are explored.

We introduced a percolation model that predicts
stretched-exponential relaxation in glassy materials, which
is commonly explained by invoking underlying heteroge-
neity [5]. Percolating networks organize into densely con-
nected blobs below ¢ and homogeneous nodes above &
[33], and thus have a built-in heterogeneity that leads to
B < 1. Further studies of the geometry of percolating net-
works and dynamics on these networks, will lead to new
predictions for slow dynamics and cooperative motion in
glassy materials.
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