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We characterize the spectral properties of weak turbulence in a liquid crystal sample driven by an
external electric field, as a function of the applied voltage, and we find a 1/f noise spectrum S(f) o« 1/f7
within the whole range 0 < 1 < 2. We theoretically explore the hypothesis that the system complexity is
driven by non-Poisson events resetting the system through creation and annihilation of coherent structures,
retaining no memory of previous history (crucial events). We study the time asymptotic regime by means
of the density #(7) of the time distances between two crucial events, yielding 7 = 3 — w, where u is
defined through the long-time form ¢ (7) o 1/7#, with 1 < u < 3. The system regression to equilibrium
after an abrupt voltage change experimentally confirms the theory, proving violations of the ordinary

linear response theory for both 7 > 1 and n < 1.
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Liquid crystals in the electrohydrodynamic convection
(EHC) regime [1-3] afford attractive examples of spatio-
temporal chaos generated by the self-organization of many
interacting units [4]. Their power spectrum is

1
S(f) = )

with 0 < 7 <2, namely, the ubiquitous 1/f noise. The
discussion of the origin of 1/ noise, even if limited to the
EHC regime, is an issue of general interest. In fact, a
general theory of 1/f noise is one of the holy grails in
statistical physics [5], and although a comprehensive dis-
cussion of this subject is beyond the scope of this Letter,
we shall get results that will lead us to rethink the 1/f noise
theoretical foundation from an overlooked perspective:
Some authors [6,7] have studied fluctuations generated
by fractal renewal processes, namely, the case where the
decorrelation of a fluctuation is caused by unpredictable
events and the time distance between two consecutive
events is characterized by a distribution density ¢ (7) that
in the time asymptotic limit is proportional to 1/7#. These
authors [6,7] found

n=3-u )

making S(f) divergent for f — 0 and w < 3. For this
reason, we shall refer to the renewal events with u <3
as crucial events.

The main goal of this Letter is to prove the renewal
origin of the EHC 1/ f noise. We note that the transmitted
EHC light is determined by the defect creation or annihi-
lation [8], with the defect annihilation or creation corre-
sponding to a sudden increase (light “on’’) or decrease
(light ““off””) of the light transmittivity, and, consequently,
to a dichotomous signal. We further note that the experi-
mental assessment of the spectrum of Eq. (1) establishes a
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contact with a problem of fundamental interest, in the field
of statistical physics: the ergodicity breakdown. In fact, the
condition 1 > 1, under the assumption that crucial events
exist, leads through Eq. (2) to p < 2, and consequently to
the ergodicity breakdown studied in the recent work of
Margolin and Barkai [7]. The condition n < 1, which is in
principle compatible with a stationary correlation function
proportional to 1/t'~7, violates the ergodic condition es-
tablished by the Lee’s ergometer [9].

To realize our goal, we shall supplement the spectrum
evaluation with the observation of the system’s response to
perturbation. We shall compare this response to a theoreti-
cal prescription, resting on the action of crucial events,
which is exact under the following assumption: The abrupt
onset of a control potential (see the illustration of the
experimental method) resets the memory of the entire
system, and makes the waiting time distribution density
for the first event occurrence identical to that for the
subsequent events. This common waiting time distribution
density has the form

-1
Tt

(1) = (,U« - l)m,

3)
according to whether we consider the light on state (| +)) or
the light off state (]—)). The two states share the same
index u with the bias T, # T_.

Notice that the choice of the form of Eq. (3), going
beyond the merely time asymptotic treatments of
Refs. [6,7], is necessary to properly describe the perturba-
tion influence [10]. The power-law behavior shows up in
the long-time regime after a short transient that in the
specific case of this Letter, as we shall see, is characterized
by oscillating behavior. The amplitude of ¢ . in the long
time is independent of the detailed form of the transient
regime. In our model, the crucial events occur at times ¢
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and the duration of each laminar region, namely, the time
interval between two consecutive crucial events, 7; =
tiv1 — t;, is derived either from ¢, (7) or from ¢ _(7),
according to a fair coin tossing prescription. The signal
&4(1) is generated by correspondingly assigning to each
laminar region the value of 1 or —1. We make the average
over infinitely many realizations and we write I1(r) =
(é5(r)) = P, — P_, namely, as the difference between
the average population P, in |+) and the average popula-
tion P_ in |—). These properties read

P.(t) =cap(t) + c=[1 — pz(1)], 4

with ¢~ = (1 * k)/2, and where the functions p.(r) are
defined as the conditional probabilities of finding the sys-
tem in the | %) state given that it was in the same state at
t=0. Thus, I1(0) = c.p,(0) —c_p_(0) =c, —c_ =
k. It is convenient to work in the Laplace representation
Flu) = J& f(2) exp(—ut)dr. We know [10]

1 —q.(u)
ull = G+ (Wq- ()]’

where g, (1) [q_(¢)] denotes the probability that an event
occurring at time ¢ may generate a transition from the state
[+) (]-)) to the state |—) (]+)). These distribution den-
sities are related to the perturbed ¢ () via

p(u) = (5)

~ ‘zft(u)
<) = (©6)
Note that for u — 0 [10]
A T+
b =1-TC = (T = =0
Using these properties we write
() = L) + 0(), ®)
where
L(u) = p(u) = p_(u), ©)
and
N 1
0w = pow) + p-—> ] o)
u
Equations (5) and (6) plugged into (9) and (10) yield
w2 —=(u) = h-_(u
and
L el 8 ) Rl R O R A L IR
u 2= () — ¢ (u)

Finally, with the help of (7), we make the long-time
prediction

DAL (A S e 7
L(z)——u_1+(A_ﬂ EM)—F(M—I)_’ if u<2,
(13)

_ Lot ﬂ_&)ﬂ' :
L() 22_1+<A2 g} a2
(14)

where 3,(A;) = (T, =T_)/(n—2) and X,(A,) =
re - ,u,)(Tﬁf_1 + T#~1). As to O(t), we have the follow-
ing theoretical prediction

A
0) = k=, (15)

where A = [2(T, T_)/(T4~" + T+ )] foru <2and A =
(T, T+ +T_T* YT, +T_)] for w>2. In the
limiting case of a weak perturbation, 7, - T7_, A —
T#~ ! where T = (T, + T_)/2, and we have an Onsager
relaxation. In the same limit 7, — 7_, Egs. (13) and (14)
coincide with the prediction of the event-dominated
fluctuation-dissipation theorem (EDFDT) of Ref. [10].

The conventional linear response theory (LRT) [9], re-
quiring the existence of a stationary correlation function,
cannot be used in the case n > 1 [6,7]. However, when the
stationary correlation function of &¢(#) exists, but it is not
integrable, namely, ®,(¢) o 1/1#, with B <1, it yields
n =1— B <1 [5], generating ergodicity breakdown ac-
cording to Lee [9], without requiring the action of crucial
events. We note that in this case the LRT would yield (k;
and k, being suitable constants)

1 k
() = kl(l - t—ﬂ) +2 (16)

in contrast with our theoretical prediction for p > 2.

The experimental observation of the EHC fluctuations
allows us to asses that the whole range 0 <7 <2 is
dominated by crucial events. Our setup consists in a
planar-aligned nematic liquid crystal (MBBA, or methox-
ybenzylidene butylaniline) sandwiched between two trans-
parent glass plates coated with indium oxide to allow
electrical conductivity. We study the conducting regime
by applying an AC electric potential difference between
the two plates with a frequency of 60 Hz. Sample dimen-
sions are: Width d = 10 = 1 um and lateral dimensions
A = 1.0 £ 0.1 cm?, yielding aspect ratio s = 1000 = 110.
The sample is maintained at 18.000 = 0.004 °C tempera-
ture. This precision is achieved using a double thermostat,
where a high-precision resistance thermistor has the role of
warming up the sample, cooled down by a thermal bath at a
lower temperature (8.00 = 0.01 °C in our setup), using a
second thermostat. The lamp under the sample is stabilized
through a photodiode-driven feedback circuit. A CCD
captures the sample images magnified by a polarizer mi-
croscope and sends it to a personal computer equipped with
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a digital video-acquisition card that transforms digital
images into 8-bit grayscale numerical matrices for subse-
quent offline analysis.

Above a threshold voltage V,, = 20 V, a convective
instability emerges, giving rise to the so-called Williams
domains [3], visualized as a regular pattern of light vs.
darkness stripes. As the voltage is further increased, the
defects start to appear in the regular pattern with a specific
dynamical behavior: It is possible to see births, deaths,
drifts, and oscillations of defects through the observed
region. A review of this phenomenon can be found in [2].
The control parameter € = V/V,, — 1, called reduced volt-
age, is defined in such a way that € > 0 corresponds to the
region where these dynamics occur. The time scales (in-
verses of drift velocities, oscillation frequencies, and
death-birth rates) decrease with increasing e, visually
showing a less spacially-correlated turbulent pattern. For
0 <e<e€ =0.21 = 0.01 we have spacial inhomogeneity
in the pattern and the system does not equilibrate. We see
lines of defects separating different zones of regular stripes
with different orientations. Further increasing e, these
regular domains become smaller and shorter living, till € =
€1, which signals the transition to another regime, €; <
€ < €, or dynamic scattering mode 1 [2], where inhomo-
geneity disappears, and a stationary correlation function
®,(7) can be defined. The transition to fully developed
turbulence (e > €,, or dynamic scattering mode 2 [2]) is
beyond the scope of this study, focusing on the presence of
1/f noise, which disappears at e = 0.9 = 0.1 < €,. Above
this point the spectral behavior lacks any power-law form,
for f — 0.

We note that the signal &g(7) of the earlier illustrated
theory is the global luminosity which is the sum of indi-
vidual contributions, whose intensity decreases or in-

.1

03 04 05 06 07 08 0.9
€

1 |
0.1 0.2

FIG. 1. Points denote u as a function of the reduced voltage €;
solid line is only a guide to the eye. Inset: Points denote power
spectrum for € = 0.260 = 0.003; line is a fit yielding p = 2.44.

creases with the creation or annihilation of defects.
Although the cooperative nature of the process is expected
to generate a global dichotomous signal according to the
theory of Ref. [11], see [12], the single &£4(¢) turns out to be
erratic, thereby making it convenient to make averages
over different realizations of £g(7), corresponding to the
same abrupt change of €. According to the theory this
average has to be identified with I1(z).

In Fig. 1, we show the indexes w stemming from the
1/f" spectra through Eq. (2). Spectral analysis was per-
formed on recorded 1-h-length signals of unperturbed
[1(r)’s, with averages on moving windows of duration
327.68 s, corresponding to 2'3 points at 0.04 s sampling
time, overlapping for half of the window lengths. We also
evaluated p using other independent techniques, like the
diffusion entropy [13] and the detrended fluctuation analy-
sis [14] giving the same results with greater accuracy. In
Fig. 1 error bars are reported according to this higher
precision, but the discussion of diffusion entropy and
detrended fluctuation analysis will be omitted here. We
note that u as a function of € shows a fast change around
= 2, signaling the transition from the nonergodic regime
of [7] to the nonergodic regime of [9]. In the inset of Fig. 1,
we show how the resulting measure is consistent with the
empirical power spectrum.

There is no overwhelming evidence up to this stage that
the 1/f complexity is due to renewal events. To reinforce
our conviction that crucial events lead the dynamics, we
use our experimental setup to prove that the renewal the-
ory, adopted to derive Eqs. (8) and (13)—(15), affords a
satisfactory picture of the system’s regression to equilib-
rium after an abrupt change of €, in accordance with the
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FIG. 2. Relaxation of II(z) for m =2.515 and u = 2.87
(upper and lower set of points and curves, respectively). Points
represent experimental observations; solid lines represent the
theoretical power-index relaxation 1/t#!. Inset: Same in natu-
ral time scale for u = 2.87, showing some oscillations before
the inverse-power-law decay.
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FIG. 3. Relaxation of II(r) for u = 1.225. Points represent
experimental I1(7). The solid line represent the theoretical sum
of two power-index relaxations, L(f) < 1/f2"#* and O(t) =
1/t*~1; the dashed line represents relaxation O(f) only. Inset:
Points denote experimental L(r) = I1(r) — O(r) (from main
panel), solid line represents an inverse-power law o 1/£27#,

EDFDT of [10] and in conflict with the ordinary LRT. For
this purpose, we modulate the voltage amplitude with a
square wave of period P = 100 s. At the beginning the
system is below threshold for a period P, = 10 s in order
to quench the system and delete any memory of spacial
correlation. Then for a period P, = P — P, = 90 s the
system is left to reach its stationary light transmittivity.
Averages were performed on 200 periods to establish a
connection with a Gibbs-like averages, unavoidable in the
nonergodic regime.

Let us move now to illustrate the important results of the
perturbation experiment, for both x4 >2 and u <2. In
both cases, as earlier mentioned, we make an average
over many realizations, thereby generating I1(z), a quantity
related to the transmitted light intensity, in arbitrary units:
I1(z) is a linear function of this luminosity, chosen in a way
that it decays to zero (corresponding to the stationary
luminosity value) from a positive value.

The case p > 2 is illustrated in Fig. 2, with the two cases
€ =0.324 (u=12515) and € =0.513 (u =2.87). In
both cases we compare the experimental results to the
theoretical prediction, O(r) of Eq. (15), namely, a relaxa-
tion decay proportional to 1/t*~!. We see that the data
follow the theoretical prediction with a good agreement.
Notice that the agreement is asymptotic, and that the
regression starts following an inverse-power law after a
few oscillations, as shown in the inset of Fig. 2. The
physical reason of these oscillations is the fast relaxation
of the background pattern transmittivity, which is super-
imposed to the defects dynamics.

The case u = 1.225(<2) is shown in Fig. 3, where the
full line corresponds to the theoretical prediction (8). The

dominant factor O(r) of Eq. (15) can be subtracted to the
experimental relaxation, and compared to the dynamical
contribution L(r) of Eq. (13). As shown in the insert of
Fig. 3, this procedure unravels a contribution to relaxation
proportional to 1/727#. Notice that a sequence of crucial
events with u <2 makes the Kolmogorov-Sinai entropy
[15] increase as L*~!, generating a randomness rate per
unit of time decreasing as 1/L?> #. This shows that the
EHC fluctuations, requiring the EDFDT of Ref. [10], are a
manifestation of this weakly chaotic condition.

In conclusion, this Letter proves that the 1/f noise in the
EHC regime is generated by crucial events, and that the
ideal 1/f noise, 7 = 1, namely, u = 2, is the boundary
between the nonergodic regime studied by the authors of
Ref. [7] (u < 2) and a regime that although is in principle
compatible with the stationary assumption would make the
Lee’s ergometer declare ergodicity breakdown. We expect
that this result will force the researchers in the field of
nonequilibrium statistical physics to rethink the 1/f noise
origin as a manifestation of crucial events.
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