
Unified Treatment of Even and Odd Anharmonic Oscillators of Arbitrary Degree

Ulrich D. Jentschura,1,2,* Andrey Surzhykov,2,3 and Jean Zinn-Justin4

1Department of Physics, Missouri University of Science and Technology, Rolla Missouri 65409-0640, USA
2Max-Planck-Institut für Kernphysik, Postfach 103980, 69029 Heidelberg, Germany

3Physikalisches Institut der Universität, Philosophenweg 12, 69120 Heidelberg, Germany
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We present a unified treatment, including higher-order corrections, of anharmonic oscillators of

arbitrary even and odd degree. Our approach is based on a dispersion relation which takes advantage

of the PT symmetry of odd potentials for imaginary coupling parameter, and of generalized quantization

conditions which take into account instanton contributions. We find a number of explicit new results,

including the general behavior of large-order perturbation theory for arbitrary levels of odd anharmonic

oscillators, and subleading corrections to the decay width of excited states for odd potentials, which are

numerically significant.
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Introduction.—One-dimensional anharmonic oscillators
are quite basic. Because of their enormous phenomeno-
logical significance, they occupy a unique position within
quantum theory [1–5]. They are treated at various levels of
sophistication in nearly every textbook on quantum me-
chanics. Here, we use the Hamiltonians of even oscillators
in the convention

HNðgÞ ¼ � 1

2
@2q þ 1

2
q2 þ gqN; ðN evenÞ; (1)

and odd oscillators as follows,

hMðgÞ ¼ � 1

2
@2q þ 1

2
q2 þ ffiffiffi

g
p

qM: ðM oddÞ: (2)

For g < 0, the potential of an even oscillator has a double-
hump structure, and it is intuitively clear that the particle
can tunnel through the barrier(s). This is manifest in the
energy levels because they develop a nonvanishing imagi-
nary part as we vary the coupling from positive g to
negative g in the complex plane. The smaller we choose
the modulus of g, the bigger the humps, the longer the
tunneling time of the particular, and the smaller is the
decay width of the state (i.e., the smaller is the modulus
of the imaginary part of the resonance energy). The reso-
nance energies are manifestly complex, and their imagi-
nary parts also involve nonanalytic exponentials.

Given the large amount of work already invested by the
physics community into the study of anharmonic oscilla-
tors, it is perhaps surprising that two very basic questions
regarding the above mentioned anharmonic oscillators
have not yet been fully addressed in the literature:
(i) What are the higher-order corrections to the nonpertur-
bative behavior of the resonance energies, and how are the
real and the imaginary part of the resonance energy de-
scribed by a (possibly) nonanalytic, generalized expansion
in g? Which mathematical structures (exponentials, loga-
rithms, . . .) form part of such an expansion? (ii) What is the
general large-order behavior of perturbation theory for an

arbitrary energy levels of an odd oscillator of arbitrary
degree?
Indeed, to answer the above questions, we rely in part on

the work of Bender and Wu who, in 1971 (see Ref. [2]),
solved question (ii) for even anharmonic oscillators, and on
the concept of PT symmetry [6–9] for the formulation of
a dispersion relation for the resonance energies of odd
oscillators. Another essential ingredient of our analysis is
generalized quantization conditions which allow us to
describe instanton contributions and which go beyond the
ordinary Bohr-Sommerfeld formalism.
Instanton actions.—We consider even anharmonic oscil-

lators of degree N in the convention (1) with energy

eigenvalues EðNÞ
n ðgÞ, and odd Hamiltonians in the conven-

tion (2) with complex resonance energies are �ðMÞ
n ðgÞ.

Formulating the problem of the determination of energy
levels in terms of a Euclidean path integral [10], it becomes
clear that instanton configurations should be analyzed, and
we start with the case of even oscillators. Here, the in-
stanton configuration exists for negative g, and we thus

scale qðtÞ ¼ ð�gÞ�1=ðN�2Þ�ðtÞ. The Euclidean action reads

S½�� ¼ ð�gÞ�ð2=N�2Þ Z dt

�
1

2
_�2 þ 1

2
�2 � �N

�
: (3)

The instanton configurations are (N even)

q�cl ðtÞ¼�ð�gÞ�ð2=N�2Þf1þcosh½ðN�2Þðt� t0Þ�g�ð1=N�2Þ:
(4)

Here, t0 is a collective coordinate. For odd anharmonic

oscillators, we transform qðtÞ ¼ �g�1=ð2M�4Þ�ðtÞ and ob-
tain the Euclidean action (M odd)

S0½�� ¼ g�ð1=M�2Þ Z dt

�
1

2
_�2 þ 1

2
�2 � �M

�
: (5)

The instanton qðtÞ ¼ qclðtÞ is unique because the potential
has lost the invariance under parity (see Fig. 1),
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qclðtÞ ¼ g�ð1=M�2Þf1þ cosh½ðM� 2Þðt� t0Þ�g�ð1=M�2Þ:
(6)

Inserting the solutions q�cl ðtÞ and qclðtÞ into Eqs. (3) and (5),
we obtain the classical Euclidean instanton actions

S½q�cl � ¼ ð�gÞ�ð2=N�2ÞAðNÞ;
S0½qcl� ¼ g�ð1=M�2ÞAðMÞ; (7a)

AðmÞ ¼ 22=ðm�2ÞB
�

m

m� 2
;

m

m� 2

�
; (7b)

where Bðx; yÞ ¼ �ðxÞ�ðyÞ=�ðxþ yÞ is the Euler Beta
function.

Dispersion relations.—An evaluation of the quantum
fluctuations about the instanton configurations according
to Ref. [10] reveals that the imaginary part of the nth
resonance energy EðNÞ

n ðgÞ, for potentials of even order N,
is given by [in leading order, corrections are of relative

order g2=ðN�2Þ]

ImEnðN; g < 0Þ ¼ � 1

n!
ffiffiffiffiffiffiffi
2�

p
�
� 2CðNÞ
ð�gÞ2=ðN�2Þ

�
nþ1=2

� exp½�ð�gÞ�2=ðN�2ÞAðNÞ�; (8)

with CðmÞ ¼ 22=ðm�2Þ. For odd potentials in the normaliza-
tion given by Eq. (2) and for positive coupling, ignoring

corrections of relative order g1=ðM�2Þ,

Im �ðMÞ
n ðg > 0Þ ¼ � 1

2n!
ffiffiffiffiffiffiffi
2�

p
�
2CðMÞ
g1=ðM�2Þ

�
nþ1=2

� exp½�g�1=ðM�2ÞAðMÞ�: (9)

The subtracted dispersion relation [2,3,11] for the ener-
gies EnðN; gÞ of the even anharmonic oscillators of degree
N is

EðNÞ
n ðgÞ ¼ nþ 1

2
� g

�

Z 0

�1
ds

ImEðNÞ
n ðsþ i0Þ
sðs� gÞ : (10)

Using the formula (8) and the dispersion relation (10), one
may calculate [2] the large-order perturbative expansion
for the ground-state energy of the nth level of an anhar-
monic oscillator of order N, where we use the perturbative

coefficients in the form EðNÞ
n ðgÞ �P

KE
ðNÞ
n;Kg

K. For an arbi-

trary level of an even oscillator of arbitrary degree, we thus
rederive [2]

EðNÞ
n;K � ð�1ÞKþ1ðN � 2Þ

�3=2n!2Kþ1�n
�

�
N � 2

2
K þ nþ 1

2

�

�
�
B

�
N

N � 2
;

N

N � 2

���ðN�2=2ÞK�n�ð1=2Þ
; (11)

which is valid up to corrections of relative order K�1. For
odd Hamiltonians hMðgÞ which involve a perturbation of
the form

ffiffiffi
g

p
qM, we have only one branch cut in the energy

[7]. The PT symmetry for purely imaginary coupling
leads to the following dispersion relation [7,12],

�ðMÞ
n ðgÞ ¼ nþ 1

2
þ g

�

Z 1

0
ds

Im�ðMÞ
n ðsþ i0Þ
sðs� gÞ : (12)

Based on the dispersion relation (12) and on the general
result for the imaginary part of the resonance energy for an
odd anharmonic oscillator given in Eq. (9), we are now in
the position to write down the large-order behavior of the
perturbative coefficients of an arbitrary level of an odd
anharmonic oscillator of arbitrary degree. Specifically, for

a resonance �ðMÞ
n ðgÞ �P

K�
ðMÞ
n;Kg

K, we find (M odd,M � 3)

�ðMÞ
n;K � 2�M

�3=2n!22Kþ1�n
�

�
ðM� 2ÞK þ nþ 1

2

�

�
�
B

�
M

M� 2
;

M

M� 2

���ðM�2ÞK�n�ð1=2Þ
: (13)

Subleading corrections.—In order to go beyond the
leading-order results, further considerations are needed.
While details of the derivation will be presented in [13],
we would like to give here the essential ingredients of our
formalism. First of all, we scale the coordinate in the

Hamiltonians (1) and (2) as q ! g�ð2½½m=2���mþ2=m�2Þq,
where ½½X�� is the integer part of X (m stands for a
general integer). We then transform the Schrödinger

to the Riccati equation by setting ’0ðqÞ=’ðqÞ ¼
�SðqÞg�ð2½½m=2���mþ2=m�2Þ, and we denote by SþðqÞ the
component of SðqÞ which is even under the operation
ðg; EÞ ! ð�g;�EÞ. For Sþ, we calculate the Wentzel-
Kramers-Brioullin (WKB) expansion for SðqÞ for given g
and energy E, using the algorithm described for a general
potential in Sec. of Ref. [14], by expanding the solution in
fractional powers of g while keeping the quantity

gð2½½m=2���mþ2=m�2ÞE fixed. A recursive procedure for the
construction of the WKB expansion of Sþðz; g; EÞ has been
outlined in Eqs. (3.40)–(3.42) of Ref. [14]. We then inte-
grate the WKB expansion of the function SþðqÞ around its
cuts using an approach based on Mellin transforms as
outlined in Appendix F.3 of Ref. [15] for general potentials
(the integration contour C0 around the cuts is chosen in

FIG. 1 (color online). Instanton configuration for the cubic
potential. The plot shows the instanton worldline �clðtÞ ¼
½coshðtÞ þ 1��1 immersed in the scaled potential Uð�Þ ¼ �3 �
1
2�

2.
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accordance with Eq. (3.52) of Ref. [14]) and conjecture the following form for the result of the contour integral,

g�ð2½½m=2���mþ2=m�2Þ I
C0
dzSþðqÞ ¼ AmðE; gÞ þ lnð2�Þ � ln�

�
1

2
� BmðE; gÞ

�
þ BmðE; gÞ ln

�
� g

2CðmÞ
�
: (14)

From the right-hand side, under a suitable separation of
real and imaginary parts, one can directly read off the two
functions BmðE; gÞ and AmðE; gÞ, which we refer to as the
‘‘perturbative function’’ and the ‘‘instanton function,’’ re-
spectively. We here indicate for completeness the first few
terms of BmðE; gÞ for the oscillators with M ¼ 3, 7 and
N ¼ 4, 6,

B3ðE; gÞ ¼ Eþ g

�
7

16
þ 15

4
E2

�
þOðg2Þ; (15a)

B4ðE; gÞ ¼ E� g

�
3

8
þ 3

2
E2

�
þOðg2Þ; (15b)

B6ðE; gÞ ¼ E� g

�
25

8
Eþ 5

2
E3

�
þOðg2Þ; (15c)

B7ðE; gÞ ¼ Eþ g

�
180675

2048
þ 444381

512
E2

þ 82005

128
E4 þ 3003

32
E6

�
þOðg2Þ: (15d)

The leading term of the A functions contains the instanton
action as given in Eq. (7): ANðE; gÞ ¼ AðNÞ�
ð�gÞ�2=ðN�2Þ þOðg2=ðN�2ÞÞ for even potentials and
AMðE; gÞ ¼ AðMÞg�1=ðM�2Þ þOðg1=ðM�2ÞÞ for odd po-
tentials, respectively. Higher-order terms read

A3ðE;gÞ¼ 2

15g
þg

�
77

32
þ141

8
E2

�
þOðg2Þ; (16a)

A4ðE;gÞ¼� 1

3g
�g

�
67

48
þ17

4
E2

�
þOðg2Þ; (16b)

A6ðE;gÞ¼ �

25=2ð�gÞ1=2�g

�
221

24
Eþ17

3
E3

�
þg2

�
2504899

7680
E

þ45769

96
E3þ17527

160
E5

�
þOðg3Þ; (16c)

A7ðE;gÞ¼
51=4�ð15Þ�ð25Þ

23=59�
ffiffiffiffi
�

p
g1=5

þg1=5
51=4�2ð35Þ�ð45Þ
27=5�

ffiffiffiffi
�

p
�
5

8
þ 9

10
E2

�

þOðg2=5Þ: (16d)

The function A7ðE; gÞ involves the square root of the
golden ratio � ¼ ð ffiffiffi

5
p þ 1Þ=2. The result for the sextic

oscillator (N ¼ 6) is at variance with expectation because
one would have assumed the presence of a term of order
g2=ðN�2Þ ¼ g1=2, but it cancels, accidentally.

In terms of the A and B functions, we can now write
down our conjectures for the generalized quantization con-
ditions. For the ‘‘stable’’ cases (odd oscillator, imaginary
coupling and even oscillator, positive coupling), we simply
conjecture them to read (we indicate two equivalent forms)

1

�
�

�
1

2
� BmðE; gÞ

�
¼ 0; BmðE; gÞ ¼ nþ 1

2
; (17)

where m can be even or odd. This form of the condition

generalizes the result 1=�ð12 � EÞ ¼ detðH � EÞ ¼ 0 for

the Fredholm determinant of the harmonic oscillator
Hamiltonian H. In the presence of instanton configura-
tions, the resonance energy is slightly displaced from the
energy that would otherwise lead to a pole of the � function
according to Eq. (17). The displacement of E is by a
nonperturbative correction which can be evaluated exactly
in leading order [see Eqs. (8) and (9)]; this means that
the zero on the right-hand side of 1=�½12 � BmðE; gÞ� ¼ 0

has to be replaced by the nonperturbatively small imagi-
nary part of the resonance energy. A comparison of the
resulting equation to the leading terms of the functions
AmðE; gÞ and BmðE; gÞ which emerge from the evaluation
of the contour integral of the WKB expansion (14) then, in
turn, naturally leads to the following conjectures for even
potentials (g < 0) and odd potentials (g > 0), respectively,

�½12 � BNðE; gÞ�ffiffiffiffiffiffiffi
2�

p
eANðE;gÞ

�
� 2CðNÞ

ð�gÞð2=N�2Þ

�
BNðE;gÞ ¼ 1; (18a)

�½12 � BMðE; gÞ�ffiffiffiffiffiffiffi
8�

p
eAMðE;gÞ

�
2CðMÞ
gð1=M�2Þ

�
BMðE;gÞ ¼ 1: (18b)

In order to solve the perturbative quantization condition
(17), we enter with an ansatz E ¼ E0 þ gE1 þ g2E2 þ . . .
and compare coefficients in each order in g. In order to
solve (18), our ansatz also has involved nonanalytic terms
as implied by the instanton contributions, and we then
expand systematically in powers of g and simultaneously
in powers of the nonanalytic factor expð�A=jgjpÞ (with A
and p suitably chosen). This ansatz naturally leads to the

triple expansions [with constant coefficients �ðm;nÞ
J;L;K and

Lmax � maxð0; J � 1Þ],

EðNÞ
n ðg<0Þ¼X1

J¼0

��
2CðNÞ

ð�gÞ2=ðN�2Þ

�
nþð1=2Þ iexpð� AðNÞ

ð�gÞ2=ðN�2ÞÞ
n!

ffiffiffiffiffiffiffi
2�

p
�
J

�XLmax

L¼0

lnL
�
� 2CðNÞ
ð�gÞ2=ðN�2Þ

�

� X1
K¼0

�ðN;nÞ
J;L;Kð�gÞ2K=ðN�2Þ; (19a)

�ðMÞ
n ðg>0Þ¼X1

J¼0

��
2CðMÞ
g1=ðM�2Þ

�
nþð1=2Þ iexpð� AðMÞ

g1=ðM�2ÞÞ
n!

ffiffiffiffiffiffiffi
8�

p
�
J

�XLmax

L¼0

lnL
�
� 2CðMÞ
g1=ðM�2Þ

� X1
K¼0

�ðM;nÞ
J;L;Kg

K=ðM�2Þ:

(19b)

The above triple expansion is involved and in need of an
interpretation [we concentrate on the ‘‘even case’’ (19a)].
The term with J ¼ 0 recovers the basic, perturbative ex-
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pansion which has only integer powers in g. Therefore,

�ðN;nÞ
0;0;KðN�2Þ=2 ¼ ð�1ÞKEðNÞ

n;K. The term with J ¼ 1 recovers

the leading contribution in the expansion in powers of

exp½�AðNÞ=ð�gÞ2=ðN�2Þ� to the imaginary part of the
resonance energy, but including perturbative corrections
which can be expressed in terms of a fractional power
series in g multiplying the nonanalytic exponential. The
first few terms of this series are given below for the first
excited state of the cubic potential. The term with J ¼ 2

involves a logarithm of the form lnð� 2CðNÞ
ð�gÞ2=ðN�2ÞÞ. The ex-

plicit imaginary parts of the logarithms cancel against the
imaginary parts of Borel sums carried out in complex
directions [16] of perturbation series that occur in lower-
order (in J) contributions. Indeed, the Laplace-Borel inte-
grations have to be carried out in a manner consistent with
the analytic continuation of the logarithms [15,17].

The above formulas allow, in principle, the determina-
tion of corrections of arbitrary order to the resonance en-
ergies of oscillators of arbitrary degree. Our first example
concerns the corrections to the excited-state energy of the
cubic,

Im �ð3Þ1 ðgÞ ¼ � 8e�2=ð15gÞffiffiffiffi
�

p
g3=2

�
1� 853

16
gþ 33349

512
g2 þ . . .

�
;

(20)

which have numerically large coefficients. The second re-
sult concerns the correction to the large-order growth of
the perturbative coefficients for the ground state of the
seventh-degree potential,

�ð7Þ0;K ¼ � 5�ð5K þ 1
2Þ

22Kþ1�3=2

�
18�

ffiffiffiffi
�

p
51=4�ð15Þ�2ð25Þ

�
5Kþ1=2

�
�
1� 21=217�

51=4�3=2450K
þ . . .

�
: (21)

Note that the absence of the g1=2 correction from the result
(16c) implies the peculiar absence of a 1=K correction to
the leading factorial growth of perturbative coefficients for
the sixth-degree potential.

Conclusions.—The general nonanalytic expansions (19)
for the resonance energies of even and odd oscillators are
triple expansions in terms of nonanalytic exponentials,
logarithmic factors, and fractional power series. They fol-
low from the generalized quantization conditions (18a) and
(18b). The general leading-order behavior of perturbation
theory for arbitrary levels of odd oscillators is given in
Eq. (13). These results allow us to describe the widths
of arbitrary resonances accurately by higher-order analytic
formulas. E.g., the first two corrections terms given in (20)
are indispensable for obtaining satisfactory agreement of
the analytic formula for the first excited cubic resonance
energy with numerical calculations, even at small g�0:01.

In a wider context, the following applications of our
results can be envisaged: in field theory (large-order esti-
mates), the perturbations about the instanton configura-
tions have usually been neglected in the calculation of

n-point functions which enter the renormalization-group
equations; our results indicate that numerically large cor-
rections may enter already on the level of model calcula-
tions, and it may thus be worthwhile to revisit the subject.
Our analysis may also be helpful for the analytic descrip-
tion of resonances in quantum dot potentials which ap-
proximate the cubic anharmonic oscillator and are
important for quantum computing; from our analysis, it
is obvious that in a general potential, allowance should be
made for higher-order correction terms in the description
of the width {a functional form expð�A=jgjpÞ½1þ Bgþ
Cg2 þ . . .� with nonvanishing B and C seems to be indis-
pensable}. From a more fundamental point of view, we can
say that in potentials which allow for tunneling of the
particle, our analysis suggests that the familiar Bohr-
Sommerfeld-Wilson quantization condition

H
pdq ¼

2�n@ still holds, but only if we assume a rather compli-
cated analytic form for the left-hand side of this quantiza-
tion condition [see Eq. (14)].
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