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Collective Motion due to Individual Escape and Pursuit Response
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Recent studies suggest that noncooperative behavior such as cannibalism may be a driving mechanism
of collective motion. Motivated by these novel results we introduce a simple model of Brownian particles
interacting by biologically motivated pursuit and escape interactions. We show the onset of collective
motion for both interaction types and analyze their impact on the global dynamics. We demonstrate a
strong dependence of experimentally accessible macroscopic observables on the relative strength of
escape and pursuit and determine the scaling of the migration speed with model parameters.
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The emergence of collective motion of living organisms,
such as exhibited by flocks of birds, bacterial colonies or
insect swarms is an ubiquitous and fascinating self-
organization phenomenon in nature, which still bears
many open questions. A common explanation for the
emergence of collective motion in a wide range of animals
is that it serves as a protection mechanisms against pred-
ators. Recent experimental results suggest a novel mecha-
nism driven by cannibalism which may, surprisingly,
facilitate collective motion in mass migrating insects [1,2].

The phenomenon of swarming in general has attracted
scientists from a wide range of disciplines with different
scopes and perspectives [3]. In recent years it also became
the focus of an increasing number of publications in the
field of statistical physics, nonlinear dynamics and pattern
formation. These contributions enhanced significantly our
understanding of collective motion in systems of self-
propelled particles (SPP) and by discovering universal
scaling laws and phase-transitionlike behavior, have of-
fered new stimuli to the theory of nonequilibrium systems
[4-12]. Recent examples of the ongoing research are a
special journal issue dedicated to active motion and
swarming [13] or the work by Grossman et al. [14], where
the authors demonstrate the emergence of collective mo-
tion of SPP interacting via inelastic collisions.

In this Letter we investigate a simple but generic model
of individuals with escape and pursuit behavior which may
be associated with cannibalism. We show how these selec-
tive repulsion or attraction interactions lead to collective
motion of individuals with highly fluctuating speed and
analyze the dependence of the model dynamics on the
relative strength of individual escape and pursuit response.
Directed translational motion in our model is a strictly
collective (but not cooperative) behavior and may be there-
fore termed group propulsion. Our model offers a novel
perspective on possible mechanisms of onset and persis-
tence of collective motion and the resulting migration
patterns in nature and represents a biologically-motivated
example of pattern formation and phase-transitions in non-
equilibrium systems.
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We model an individual organism as an active Brownian
particle in two dimensions (d = 2) with an internal energy
depot (see [15] for details). This additional degree of free-
dom describes the internal energy budget of individuals
determined by their uptake of nutrients, internal dissipation
to maintain body processes and conversion of internal
energy into energy of motion. It allows individuals in our
model to increase their speed in reaction to external stimuli
by conversion of internal energy into kinetic energy. For
simplicity we assume throughout this work that at all times
there is a surplus of internal energy which allows us to
neglect the explicit treatment of the energy balance and
focus on the spatial dynamics only.

Each individual (particle) obeys the following Langevin
dynamics:

r,=v, Vi = —yv& v, + F§ + 42D, &, (1)
The first term on the left-hand side of the velocity equation
(1) is a friction term with friction coefficient y and an
arbitrary power dependence on velocity represented by
a =1,2,3,.... The response of individual i to other indi-
viduals is described by an effective social force F;. The last
term is a noncorrelated Gaussian random force with inten-
sity D,. A solitary individual (F} = 0) explores its envi-
ronment by a continuous random walk, where the
individual velocity statistics are determined by 7y, « and
D,,. The parameters are given in arbitrary time and space
units 7 and X: [y] = X'~ ¢T* "2 [D,] = X*>T 3.

The finite size of individuals is taken into account by
elastic hard core collisions with a particle radius Ry, [16].

Motivated by experimental observation [2], we intro-
duce the following social response: If approached from
behind by another individual j, the focal individual i
increases its velocity away from it in order to prevent being
attacked from behind. We refer to this behavior as
escape (e). If the focal individual “‘sees’ another individ-
ual up-front moving away, it increases its velocity in the
direction of the escaping individual. We refer to this be-
havior as pursuit (p). No response in all other cases. The
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response of an individual is determined the following
decision algorithm: (A) Is there another individual within
my sensory range [, > Ry.; (B) If yes, is it in front or
behind me, and (C) does it come closer or does it move
away.

Thus we write F = f¢ + f/ as a sum of an effective
escape (e) and an effective pursuit (p) force

fi= %ZAVJ'Z'H(ZS — 1;)0(svit ;) 0(s,v it (2
k- j

with k = e, p. Here x, . = 0 are the corresponding inter-
action strengths and Av;; = (v;;£,)#}; is the relative veloc-
ity of particle j with respect to particle i, with v;; = v; —v;
and t; = (r; — r;)/|r; — r;|. The Heaviside functions 6
reflect the conditions for the escape and the pursuit re-
sponse with s, = —1 and s, = 1. Both forces are normal-
ized by the respective number of individuals the i-th
individual interacts with (N,, N,).

The symmetry of the interactions is broken in several
ways: the interactions act only on one of the interacting
particles (action # reaction); the interactions are direc-
tion selective - the particles distinguish between their
front (v; - r;; > 0) and their back (v; - r;; < 0) and between
approach (vj; -r; <0) and escape (v;; -r;; >0); the
strength of interaction to the front and back may be differ-
ent (x, # xp)- The most important property of the inter-
actions is their antidissipative nature with respect to kinetic
energy. Note that F} leads only to acceleration of individu-
als and is analogous to the autocatalytic mechanism pro-
posed in Bazazi et al. [2].

Throughout this Letter we will discuss our numerical
results in terms of the rescaled density p, = NI2/L?,
where N is the total particle number, /; the interaction
range and L the size of the simulation domain. All simu-
lation results were obtained with periodic boundary con-
dition. We will restrict here to the case of moderate noise
intensity D, < 1 and focus on the system behavior with
changing density p,, which may be controlled in experi-
ments. For increasing noise D, the system shows global
behavior related to dynamics of SPP [4,7,11].

Numerical simulation reveal that irrespective of the de-
tailed model parameters, the pursuit and escape interac-
tions lead to global collective motion at high particle
densities p, and moderate noise intensities D, (Fig. 1).
At low p, however we observe a very different behavior in
dependence on the microscopic details of the model, where
the velocity statistics and spatial migration patterns depend
strongly on the relative strength of escape y, and pursuit
Xp- For x, > 0and y, — 0 with increasing p a transition
between a disordered state, with vanishing mean migration
speed (U) = |3 ;v;|//N =0 and an ordered state with
(U) >0 takes place. This resembles similar transitions
reported for SPP with velocity alignment (Fig. 1 and 2)
[4]. With increasing y, the transition shifts to lower p;
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FIG. 1. Typical spatial configurations and particle velocities
(small arrows) for pursuit-only (p), pursuit + escape (p + ¢) and
escape only (e) cases at different particle densities p, = 0.30,
1.25,2.25. Mean migration direction and speed U is indicated by
large arrows (U = 0 for escape only and p, < 1).

until it vanishes. For y, >0 and y, — O there is no
dependence of (U) on p;.

In order to understand the dynamics we investigate the
influence of escape and pursuit interactions independently,
by analyzing the extreme cases: x, =0, x, >0 (only
escape) and y, = 0, x, > 0 (only pursuit).

In the escape-only case the particles try to keep their
distance with respect to individuals approaching from be-
hind. To the front only interactions via the hard core
collisions take place. At low p, after an escape response
the probability of interaction within the characteristic time
of velocity relaxation vanishes and the particles are able to
reorient themselves (disordered state). With increasing p;
the frequency of escape interactions increases and the
particles are able to correlate their velocities on several
interaction length scales but subensembles may still move
in different directions. We observe a transition to the
ordered state via an active fluidlike state [p, = 1.25;
Fig. 2(a)]. In the ordered state all particles are able to
correlate their direction of motion. At all p; we obtain
spatially homogeneous distribution of particles. The tran-
sition is also reflected in the particle speed distribution
P(v). At low densities P(v) corresponds to the analytical
result obtained for noninteracting particles [Fig. 2(b)],
whereas at high p, the maximum of the distribution shifts
to higher speeds indicating a transition from pure random
walk to directed translational motion [Fig. 2(c)].

In the pursuit-only case already at low p, a highly
inhomogeneous state evolves, initiated by formation of
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FIG. 2 (color online).

P(v) in a.u.

(a) Mean velocity (U) for escape-only (O) x, = 10, y, = 0, pursuit-only (X) y, =0, x, = 10 and

symmetric escape + pursuit (L) y, = x, = 10 vs p, obtained from numerical simulations with periodic boundary conditions
(y=1,D, =0.05 a =3, R, = 1, [; = 4; only translational solutions were considered; error bars represent one standard deviation).
Particle speed distribution P(v) for the different interaction types in comparison with the analytical solution for noninteracting

Brownian particles (solid line) at p, = 0.24, 1.68 (b,c).

small compact particle clusters, performing coherent trans-
lational motion. As there is no escape interaction the
density of the clusters is only limited by the hard core
radius. At moderate noise intensities the clusters are highly
stable and a process of cluster fusion can be observed
where larger clusters absorb smaller clusters and solitary
particles. The dominant stationary configuration with pe-
riodic boundary conditions, and moderate noise, is a single
large cluster performing translational motion (Fig. 1). The
migration speed (U) in Fig. 2(a) is given by the mean speed
of a single cluster (u) = |YicusterVil/Netuser» Which for
large clusters becomes independent of the cluster size and
therefore independent of p;. The same holds for P(v) as
shown in Figs. 2(b) and 2(c). An intriguing feature of
pursuit-only is the possibility of the formation of large
scale vortices out of random initial conditions due to
collisions of clusters moving in opposite directions. After
nucleation, a vortex may grow by absorbing smaller clus-
ters leading to a single rotating structure [Fig. 3(a)] with
lifetimes exceeding 103 time units. Preliminary results on
vortex-stability indicate a monotonic increase of stability
(i.e., lifetime) with size (not shown). The emergence of
vortices in our model is, in particular, remarkable because
so far they have only been reported for systems of SPP with
confinement, or attracting potentials, respectively [17].
Here the pursuit interaction acts in a sense as both: a
propulsion mechanism and an asymmetric attraction.

The analysis of the dynamics shows that both interac-
tions—escape and pursuit—lead to collective motion but
have an opposite impact on the density distribution.
Whereas escape leads in general to a homogenization of
density within the system, pursuit facilitates the formation
of density inhomogeneities (clusters). This leads us to the
insight that the actual escape + pursuit dynamics where
Xp» Xe > 0 is a competition of the two opposite effects
with respect on the impact on the particle density. The
stability of moving clusters in this simple model is deter-
mined by the relative ratio of the interaction strengths. In
general for the escape + pursuit case at low p, we observe
fast formation of actively moving particle clusters with
complex behavior: fusion and break up of clusters due to

cluster collisions as well as spontaneous break up of clus-
ters due to fluctuations. The weak dependence of the
particle speed distribution P(v) on p, combined with the
clear deviation from the noninteracting case at low p;
[Figs. 2(b) and 2(c)] shows that the increase of (U) with
p, for escape + pursuit originates from alignment of indi-
vidual cluster velocities.

In order to determine the scaling of (U) with model
parameters, we consider the smallest cluster which shows
directed translational motion: a particle pair (1, 2). We
assume particle 1 being in the front of particle 2,
Xe=Xp=x and |rjy| <[ at all times. Through a
transformation of Eq. (1) into polar coordinates with
v, = (v; cosp,, v;sing;), where ¢; is defined as the
angle between v; and Ty, it can be shown that for
—7/2 < ¢; < /2 (i = 1, 2) the escape and pursuit inter-
action lead to an increase of either v, or v, in order to
harmonize the speed of the slower particle with the faster
one. The acceleration is counterbalanced by the frictional
force and results in a nonvanishing translational velocity of
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FIG. 3 (color online). (a) A single large vortex formed from
random initial conditions for the pursuit-only case. The arrow
indicates the rotational direction. Comparison of numerically
obtained average pair velocities (u) for « =1 (O) and @ = 3
() with the result of Eq. (4) (solid lines): (b) (u) over friction
coefficient vy, (c) noise intensity D, (d) and interaction strength
x- (&) {u) vs friction function exponent «. Here we distinguish
two cases A > 1 (O) and A < 1 (O), with A = /D, x/7/7y.
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the particle pair. In addition the interaction stabilizes the
translational motion along F,, i.e., {¢;) — 0. After the
system relaxes to a stationary state (¥, varies slowly in
time) we end up with effectively one-dimensional transla-
tional motion of the particle pair.

The evolution of the mean speed of a particle pair in
this one-dimensional situation u;; = (v; + v,)/2 with
v| = v, can be approximated as

A”ld
At

The second term on the right-hand side of Eq. (3) ac-
counts for the acceleration of the particle pair due to the
escape + pursuit interaction with dv; = u — v;. The fac-
tor 1/2 takes into account that at a given time only one of
the particles accelerates.

The deviations of individual particle speed from the
mean speed result from the action of the random forces.
We approximate the expectation value of the speed devia-
tions {|Sv|),,, by considering the speed deviations as dis-
crete increments taken from a Gaussian distribution with
zero mean and variance o7, = 2D, (Wiener process).
Replacing 7 by the relaxation time of the interaction 1/ y

yields: {|dv|),; = 24/D, /7 x. The stationary velocity of a
particle pair can be calculated from (3) to:

g = (;ﬁ)” o

This result is in excellent agreement with numerical simu-
lations of individual particle pairs (Fig. 3) for wide pa-
rameter ranges. The scaling in Eq. (4) agrees at moderate
D,, with the measurements of the average speed of large
clusters and the ordered phase for the escape-only case.

In summary, we have presented an individual based
model for the kinematic description of large groups of
individuals, where each individual responses to others in
its local neighborhood by escape and pursuit behavior. The
response is described by an effective social force motivated
by recent experimental results on mass migrating insects.
Our model shows the onset of collective motion due to the
escape and pursuit interaction for wide range of parame-
ters. The analysis of the model dynamics shows that the
macroscopic behavior, which can be observed in experi-
ments, such as migration speed vs density and the spatial
migration patterns, depends strongly on the relative
strength of the escape and the pursuit behavior of individu-
als. Furthermore we were able to obtain the right scaling of
the migration speed with model parameters which is con-
firmed by numerical simulations.

The relevance of different possible swarming interac-
tions in real systems is still an open question, but recent
experiments on marching insects suggest that escape domi-
nates their marching behavior [2]. In this case our model
predicts a phase transitionlike behavior of the mean migra-

1
~ —yuf, + §X<|5Ui|>ld' 3)

tion speed (U) in dependence on the density p, which is
supported by previous results [18]. On the other hand, the
coherently moving clusters and vortex structures emerging
for the pursuit-only case resemble observations of fish
schools [19] and suggest the relevance of our model to a
wide range of swarming phenomena in nature: Escape
dominated behavior offers a possible explanation for col-
lective motion in species with high levels of intragroup
aggression (cannibalism), whereas pursuit-only behavior
might represent an effective mechanism for onset of col-
lective motion in groups of nonaggressive individuals with
limited sensory and cognitive abilities.
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