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In a noncontextual hidden variable model of quantum theory, hidden variables determine the outcomes

of every measurement in a manner that is independent of how the measurement is implemented. Using a

generalization of this notion to arbitrary operational theories and to preparation procedures, we demon-

strate that a particular two-party information-processing task, ‘‘parity-oblivious multiplexing,’’ is powered

by contextuality in the sense that there is a limit to how well any theory described by a noncontextual

hidden variable model can perform. This bound constitutes a ‘‘noncontextuality inequality’’ that is

violated by quantum theory. We report an experimental violation of this inequality in good agreement

with the quantum predictions. The experimental results also provide the first demonstration of 2-to-1 and

3-to-1 quantum random access codes.
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The Bell-Kochen-Specker theorem [1] shows that the
predictions of quantum theory are inconsistent with a
hidden variable model having the following feature: if A,
B, and C are Hermitian operators such that A and B
commute, A and C commute, but B and C do not commute,
then the value predicted to occur in a measurement of A
does not depend on whether B or C was measured simul-
taneously. This feature is called ‘‘noncontextuality.’’
Significantly, it is only well-defined for models of quantum
theory (and then only for projective measurements and
deterministic models) [2]. By contrast, Bell’s definition
of a localmodel applies to any theory that can be described
operationally [3]. Consequently, whereas one can test
whether or not experimental statistics are consistent with
a local model (by testing whether or not they satisfy Bell
inequalities), there is no way to test whether or not experi-
mental statistics are consistent with a noncontextual model
(and no way of defining associated ‘‘noncontextuality in-
equalities’’) unless one generalizes the traditional notion of
noncontextuality in such a way that it makes no reference
to the quantum formalism. Suggestions for such a formu-
lation have been made by several authors [4]. A particu-
larly natural generalization (and slight modification) which
applies to all models (deterministic or not) of any opera-
tional theory has been proposed in Ref. [2]. We here derive
a noncontextuality (NC) inequality based on this notion.

Because information-theoretic tasks can be character-
ized entirely in terms of experimental statistics, one can
explore whether theories that violate NC inequalities may
provide information-theoretic advantages over theories
that satisfy these inequalities. We prove that this is indeed
the case for a task which we call parity-oblivious multi-
plexing, a kind of two-party secure computation. (The
notion that contextuality might yield an advantage for
multiplexing tasks was first put forward by Galvão [5].)

The NC inequality we derive provides a bound on the
probability of success in this task, and we demonstrate a
quantum protocol for parity-oblivious multiplexing for
which the probability of success exceeds the noncontextual
bound.
Finally, we report an experimental implementation of

this protocol that achieves a probability of success in good
agreement with the quantum result and in violation of the
NC inequality.
Operational theories and noncontextual models.—In an

operational theory, the primitives of description are prepa-
rations and measurements, specified as instructions for
what to do in the laboratory. The theory simply provides
an algorithm for calculating the probability pðkjP;MÞ of
an outcome k of measurementM given a preparation P. As
an example, in quantum theory, every preparation P is
represented by a density operator �P, every measurement
M is represented by a positive operator valued measure
fEM;kg, and the probability of outcome k is given by

pðkjP;MÞ ¼ Trð�PEM;kÞ.
In a hidden variable model of an operational theory, a

preparation procedure is assumed to prepare a system with
certain properties and a measurement procedure is as-
sumed to reveal something about those properties. The
set of all variables describing the system is denoted �.
It is presumed that for every preparation P, there is a
probability distribution pð�jPÞ such that implementing P
causes the system to be prepared in physical state �
with probability pð�jPÞ. Similarly, it is presumed that for
every measurement M, there is a distribution pðkj�;MÞ
such that implementing M on a system described by �
yields outcome k with probability pðkj�;MÞ. For the hid-
den variable model to reproduce the predictions of the
operational theory, it must satisfy pðkjP;MÞ ¼R
d�pðkj�;MÞpð�jPÞ.
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A hidden variable model is preparation noncontextual if
the following implication holds,

8M: pðkjP;MÞ ¼ pðkjP0;MÞ ) pð�jPÞ ¼ pð�jP0Þ; (1)

that is, if two preparations yield the same statistics for all
possible measurements, then they are represented equiva-
lently in the hidden variable model. Similarly, measure-
ment noncontextuality is the condition that

8P: pðkjP;MÞ ¼ pðkjP;M0Þ ) pðkj�;MÞ ¼ pðkj�;M0Þ;
(2)

that is, if two measurements have the same statistics for all
possible preparations, then they are represented equiva-
lently in the model. More details can be found in
Ref. [2]. An NC inequality is any inequality on experimen-
tal statistics that follows from the assumption that there
exists a hidden variable model that is preparation and
measurement noncontextual. It is of the form
fðpðkjP1;M1Þ; pðjjP2;M2Þ; . . . Þ � C for some function f
and constant C.

Parity-oblivious multiplexing.—Suppose that Alice and
Bob wish to perform the following information-processing
task, which we call n-bit parity-oblivious multiplexing.
Alice has as input an n-bit string x chosen uniformly at
random from f0; 1gn. Bob has as input an integer y chosen
uniformly at random from f1; . . . ; ng and must output the
bit b ¼ xy, that is, the yth bit of Alice’s input. Alice can

send a system to Bob encoding information about her
input; however, there is a cryptographic constraint: no
information about any parity of x can be transmitted to
Bob. More specifically, letting s 2 Par where Par �
frjr 2 f0; 1gn;Piri � 2g is the set of n-bit strings with at
least 2 bits that are 1, no information about x � s ¼ L

ixisi
(termed the s-parity) for any such s can be transmitted to
Bob (here � denotes sum modulo 2). This task is similar to
an n-to-1 quantum random access code [5–8] except that it
has a constraint of parity obliviousness rather than a con-
straint on the potential information-carrying capacity of
the system used.

Lemma 1.—Classically, the optimal probability of suc-
cess in n-bit parity-oblivious multiplexing satisfies pðb ¼
xyÞ � ðnþ 1Þ=2n.

Proof.—(For details, see [9].) The only classical encod-
ings of x that reveal no information about any parity (while
encoding some information about x) are those that encode
only a single bit xi for some i. Given that y is uniformly
distributed, it makes no difference which bit it is.
Therefore, we may assume that Alice and Bob agree that
Alice will always encode the first bit, x1. If y ¼ 1, which
occurs with probability 1=n, then Bob can output b ¼ xy
and win. With probability ðn� 1Þ=n, we have y � 1, and
in this case, Bob can at best guess the value of xy and wins

with probability 1=2. j
What is the most general protocol that can be imple-

mented in an arbitrary operational theory? For each input
string x, Alice implements a preparation procedure Px, and

for each integer y, Bob implements a binary-outcome
measurementMy, and reports the outcome b as his output.

The probability of winning is

pðb ¼ xyÞ ¼ 1

2nn

X

y2f1;...;ng

X

x2f0;1gn
pðb ¼ xyjPx;MyÞ (3)

where 1=2nn is the prior probability for a particular x and
y. The parity-oblivious constraint requires that for every
s-parity, there is no outcome of any measurement for
which posterior probabilities for s-parity 0 and s-parity 1
are different, that is,

8s 8M 8k:
X

xjx�s¼0

pðPxjk;MÞ ¼ X

xjx�s¼1

pðPxjk;MÞ: (4)

Noncontextuality inequality.—The main theoretical re-
sult of this Letter is the following theorem.
Theorem 2.—In an operational theory that admits a

preparation noncontextual hidden variable model, the op-
timal probability of success in n-bit parity-oblivious mul-
tiplexing satisfies pðb ¼ xyÞ � ðnþ 1Þ=2n.
Proof.—Define Ps;b to be the procedure obtained by

choosing uniformly at random an x such that x � s ¼ b
and implementing Px. Clearly, for any measurement M,
the probability of outcome k given preparation Ps;b is

simply

pðkjPs;b;MÞ ¼ 1

2n�1

X

xjx�s¼b

pðkjPx;MÞ: (5)

Similarly, the probability of hidden variable � given an
implementation of Ps;b is simply

pð�jPs;bÞ ¼ 1

2n�1

X

xjx�s¼b

pð�jPxÞ: (6)

Now note that one can reexpress the parity-oblivious
condition, Eq. (4), as 8s 8M:

P
xjx�s¼0pðkjPx;MÞ ¼P

xjx�s¼1pðkjPx;MÞ (it follows from Bayes’ rule and the

uniformity of the prior over x). Combining this with
Eq. (5), we infer that 8s8M:pðkjPs;0;MÞ¼pðkjPs;1;MÞ
which is simply the statement that mixed preparations
corresponding to opposite s-parities are indistinguishable
by any measurement. But together with the assumption that
the hidden variable model is preparation noncontextual,
Eq. (1), this implies that8s: pð�jPs;0Þ ¼ pð�jPs;1Þ, which
states that mixed preparations corresponding to opposite
s-parities are also indistinguishable at the hidden variable
level. Using Eq. (6) and Bayes’ rule again, we obtain

8s: X

xjx�s¼0

pðPxj�Þ ¼
X

xjx�s¼1

pðPxj�Þ: (7)

Therefore, even if one knew �, the posterior probabilities
for s-parity 0 and s-parity 1 would be the same, that is, one
would know nothing about any s-parity of x. The argument
so far can be summarized as follows: for preparation non-
contextual models, parity obliviousness at the operational
level implies parity obliviousness at the level of the hidden
variables.
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The hidden state � provides a classical encoding of x.
But, as just shown, it is one that cannot contain information
about any s-parity. We recall from lemma 1 that such
encodings have at most 1 bit of information, xi, about x.
Consequently, even if Bob could determine � perfectly, he
and Alice could at best achieve the optimal probability of
success achievable in a classical protocol (specified in
lemma 1), while if Bob is limited in his ability to determine
� (as will be the case in general in a hidden variable
model), they will do worse. j

Quantum case.—We now consider how well one can
achieve parity-oblivious multiplexing in quantum theory.
The following is a protocol for the 2-bit case that uses a
single qubit as the quantum message. Alice encodes her
2 bits into the four pure quantum states with Bloch vectors
(� 1ffiffi

2
p , � 1ffiffi

2
p ) equally distributed on an equatorial plane of

the Bloch sphere, as indicated in Fig. 1 [recall that a density
operator � is related to its Bloch vector ~r by � ¼ 1

2 ðI þ ~r �
~�Þ, where ~� is the vector of Pauli matrices]. Bob measures
along the x̂ axis if he wishes to learn the first bit, and along
the ŷ axis if he wishes to learn the second. He guesses the
bit value 0 upon obtaining the positive outcome. In all
cases, the guessed value is correct with probability
cos2ð�=8Þ ’ 0:853553. Meanwhile, no information about
the parity can be obtained by any quantum measurement
given that the parity 0 and parity 1 mixtures are represented
by the same density operator, 1

2�00 þ 1
2�11 ¼ 1

2�01 þ
1
2�10 ¼ I=2. We have a violation of the NC inequality of

Thm. 2 because for n ¼ 2, the upper bound on the proba-
bility of success is 3=4. By exploiting a connection with the
Clauser-Horne-Shimony-Holt inequality [10], one can
show that this protocol yields the maximum possible quan-
tum violation of the NC inequality.

A protocol for 3-bit parity-oblivious multiplexing using
a single qubit proceeds as follows. Alice encodes her 3 bits
into a set of eight pure quantum states associated with
Bloch vectors (� 1ffiffi

3
p , � 1ffiffi

3
p , � 1ffiffi

3
p ) forming a cube inside

the Bloch sphere (see Fig. 1). Bob measures along the x̂, ŷ,
or ẑ axes to obtain the first, second, or third bits. In all
cases, the guessed value is correct with probability 1

2 �
ð1þ 1ffiffi

3
p Þ ’ 0:788675. The mixture of the four states corre-

sponding to x1 � x2 ¼ 0 [i.e., s-parity 0 for s ¼ ð1; 1; 0Þ] is

identical to the mixture of the four states corresponding to
x1 � x2 ¼ 1 and is equal to I=2. Similarly for the two
mixtures associated with each of the other three parities,
x1 � x3 [s ¼ ð1; 0; 1Þ], x2 � x3 [s ¼ ð0; 1; 1Þ], and x1 �
x2 � x3 [s ¼ ð1; 1; 1Þ]. The protocol is therefore parity
oblivious for all s-parities. Again, we have a violation of
the NC inequality because for n ¼ 3, the upper bound on
the probability of success is 2=3. It is an open question
whether 0.788675 is the maximum possible quantum
violation.
The 2-bit protocol was originally presented as a 2-to-1

quantum random access code by Wiesner [6] and redis-
covered in Ref. [7], while the 3-bit protocol was presented
in Ref. [8] as an instance of a 3-to-1 quantum random
access code (the original idea is attributed to Chuang in
Ref. [7]).
Experimental results.—We experimentally demonstrate

better-than-classical performance for 2-bit and 3-bit parity-
oblivious multiplexing by implementing the quantum pro-
tocols using polarization qubits. Photon pairs from down-
conversion are coupled into single mode optical fibers. One
photon acts as a trigger, while the other is used in the
experiment. Alice’s state preparation consists of a fiber
polarization controller, and a polarizing beam displacer,
rotated to the input state angle, used to ensure high-purity
linearly polarized states for the 2-bit protocol. An addi-
tional quarter wave plate is used to prepare elliptically
polarized states for the 3-bit protocol. Bob’s measurement
consists of a polarizing beam displacer mounted in a
computer-controlled rotation mount, followed by a single
photon counting module. For our demonstration, a detector
is placed at only a single output port of the beam displacer
and the probability of each outcome is calculated from the
relative number of counts for a given beam displacer angle
and the one orthogonal to it [9]. Adjustment of the beam
displacer and quarter wave plate angles allows measure-
ment of the horizontal/vertical basis, the diagonal-
antidiagonal basis, and the right/left-circular basis. Valid
measurement events are heralded by a coincidence count
between the directly detected photon and the experiment
photon. These experimental procedures for a given x and y
define the preparation Px and the measurement My,

respectively.
We obtained probabilities pðk ¼ xyjPx;MyÞ by accumu-

lating statistics over approximately 3:5� 107 coincidence
counts for each x and y in the 2-bit scheme and 2:4� 107

in the 3-bit scheme. Using Eq. (3), we calculated the 2-bit
and 3-bit probabilities of success to be pðb ¼ xyÞ ¼
0:851929� 0:000030 and pðb ¼ xyÞ ¼ 0:786476�
0:000017, respectively. The errors were determined from
the Poissonian counting statistics of the parametric source
and the small repeatability error in the wave plate settings,
using standard error analysis techniques. These probabil-
ities of success violate the NC inequality of Thm. 2 with a
high degree of confidence: 3410 and 6922 standard devia-
tions, respectively. They are also close to the predicted

FIG. 1. Bloch representation of states and measurements in
quantum 2-bit and 3-bit parity-oblivious multiplexing.
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quantum values of 0.853553 and 0.788675, achieving a
violation that is 98.4% and 98.2%, respectively, of the
gap between the NC bound and the quantum value.

Just as Bell inequality violations are only surprising
given the absence of signalling between the two wings of
the experiment, the NC inequality violations are only
surprising given the parity-oblivious property. However,
whereas one can establish the absence of signalling by
confirming that the two wings are spacelike separated,
one must directly test for transmission of information about
the parity in our experiment. A consideration of how this is
to be accomplished highlights two shortcomings in the
operational definition of preparation noncontextuality of
Eq. (1): in practice, one can never implement all measure-
ments and one never finds truly identical statistics. The first
issue may be addressed by relying on previous experimen-
tal evidence for the existence of a tomographically com-
plete set of measurements—one from which the statistics
of any other measurement can be calculated—and testing
indistinguishability relative to this set alone, as we shall do
here. The second issue may be addressed by presuming a
kind of continuity: closeness of experimental statistics
implies closeness of the representations in the model [2]
(this parallels the problem of dealing with imperfect align-
ment in traditional proofs of contextuality [11], where
continuity also provides an answer [4,12]). In the present
work, we simply demonstrate that the experimental statis-
tics are close to parity oblivious while yielding a large
violation of the noncontextuality inequalities, and leave a
more detailed analysis for future work.

We quantify the obliviousness of our experimental pro-
tocol for a particular s-parity by the maximum probability
that Bob can correctly estimate this parity in a variation
over all measurements. One can estimate this by imple-
menting a tomographically complete set of measurements,
then reconstructing the states �0 and �1 associated with
s-parity 0 and s-parity 1, and finally making use of the fact
that the maximum probability of discriminating these
states is 1

2 þ 1
4 Trj�0 � �1j. Among all s-parities, we cal-

culate the largest such probability to be 0:5020� 0:0002.
This calculation is not sufficient, however, because it ne-
glects an imperfection in the experiment that also contrib-
utes to leakage of information about the parity, namely, that
there is a small probability of more than one photon being
sent to the experiment. By our characterization of the
source, we estimate the probability of two photons to be
0:007� 0:003 relative to the single photon generation
probability. If two photons pass through the polarizers in
the ideal protocol, the maximum probability of correctly
estimating the parity can be quite far from 1=2: it is 3=4 in
the case of the 2-bit scheme and 2=3 for three of the four
s-parities in the 3-bit scheme. However, the fact that this
possibility occurs with low probability implies that the
two-photon contribution to the probability of correct esti-

mation is comparable to the one-photon contribution.
(Contributions from three or more photons are negligible
in comparison). The weighted average of these contribu-
tions is easily calculated and the largest, among all
s-parities, is found to be 0:504� 0:002. The fact that this
is within 1% of 1=2 demonstrates that our experimental
protocols are indeed close to parity oblivious.
Given that the quantum protocols described herein are

also 2-to-1 and 3-to-1 random access codes, our results
constitute the first experimental demonstration of a quan-
tum advantage for these tasks as well.
Finally, it is worth noting that every Bell inequality is a

special case of an NC inequality where all assumptions
of noncontextuality are justified by locality [2]. Conse-
quently, every experimental violation of a Bell inequality
demonstrates the impossibility of a noncontextual hidden
variable model. Indeed, this is all that can be demonstrated
by those that fail to seal the locality loophole [13,14].
Nonetheless, a dedicated experiment of the sort we have
described here can achieve a large violation with high
confidence at a smaller cost of experimental effort.
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