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We have performed molecular dynamics computer simulations of a dense Lennard-Jones liquid mixture

to study dynamic heterogeneity from normal liquid temperatures down to a supercooled temperature 15%

above the previously identified mode-coupling temperature Tc of the model. A temperature-dependent

correlation length associated with the correlation function of mobility fluctuations is calculated. The

results are used to test two sets of scaling hypotheses for the dynamic heterogeneity. The results are in

close agreement with the inhomogeneous mode-coupling theory of Biroli et al. [Phys. Rev. Lett. 97,

195701 (2006)] for both the � and � relaxation regimes. Comparison with results for kinetically

constrained models suggest that the Lennard-Jones mixture studied is more similar to models of fragile

liquids than models of very strong liquids.
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Dynamic heterogeneity has been recognized as a signifi-
cant feature of supercooled liquids. At any given time,
there are regions of such a material in which the molecules
are more mobile and hence relaxation takes place at rates
that are larger than the average relaxation rates in the
material. Moreover, the correlation length that character-
izes the sizes of these regions increases as the temperature
is lowered. Experimental and computer simulation studies
of this phenomenon have been the subject of several re-
views [1–4]. For estimates of the dynamic correlation
lengths based on experimental studies, see [5]. For recent
simulation and theoretical studies of dynamic heterogene-
ity, see [6–24].

One approach to the theoretical understanding of dy-
namic heterogeneity is based on the use of kinetically
constrained lattice models [4,11,12,15–20,23,25–27].
Another approach is based on generalizations [7,22] of
the mode-coupling theory of Götze [28]. The existence
of dynamic heterogeneities and an increasing correlation
length is also implied by the random first-order transition
theory of supercooled liquids [29–32]. Many simulation
studies of model liquids [1,6,10,12,21,22,33–36] have
given evidence of a growing length scale for correlations
of molecular mobility as the temperature of a material is
lowered.

Here we present results of extensive molecular dynamics
simulations designed to study dynamic heterogeneity in a
supercooled Lennard-Jones mixture at equilibrium. The
system was that of Kob and Andersen [37], which has
been the object of several studies [6,8,12,14,21,24,38]. In
the present work, this model was simulated at a fixed
reduced density of 1.204, for reduced temperatures 0.9,
0.8, 0.7, 0.6, 0.55, and 0.5 for systems of 1000, 8000, and
27 000 particles. These temperatures extend into the super-
cooled liquid regime but are above the apparent mode-
coupling temperature Tc of the system. For the present
purposes, we use a value of Tc ¼ 0:438, which we deter-
mined by fitting various relaxation times for 27 000 particle

systems, for the temperatures mentioned, with a functional
form � ¼ AðT � TcÞ��. The inclusion of the 27 000-
particle systems improved the quality of the extrapolation
of k-dependent quantities to zero wave vector. For each
temperature and for each system size, the length of the
equilibration run was approximately 40 times the structural
relaxation time �� [39] at that temperature and there were
five data collection runs for the systems of largest size and
ten runs for all the other systems. Each data collection run
had a length of 25��.
The model is a mixture of 80% A particles and 20% B

particles, with the A particles being larger. We use a
definition of particle mobility that is identical or similar
to definitions used in previous work [33]. We choose a
distance d� and a time t� and define the mobility of particle
i at time t as

�iðt; d�; t�Þ ¼ 1 if jriðtþ t�Þ � riðtÞj � d�
¼ 0 otherwise

(1)

Here riðtÞ is the position of particle i at time t. The position

dependent mobility density of A particles is �ðr; tÞ ¼
PNA

i¼1 �ðr� riðtÞÞ�iðtÞ, where the sum extends over the

NA particles of type A, and, for simplicity, we have not
indicated the d� and t� dependence. We define a ‘‘suscep-
tibility’’ �ðkÞ as �ðk; TÞ � N �1hj�̂ðk; tÞ � h�̂ðk; tÞij2i,
where �̂ðk; tÞ is the Fourier transform of �ðr; tÞ. The
angular brackets denote an average over an equilibrium
canonical distribution of states at temperature T, andN is
a normalization constant chosen to be NAh�i, where h�i is
the average mobility of the A particles. With this choice,
�ðk; TÞ is an intensive dimensionless quantity. The inverse
Fourier transform of �ðk; TÞ, which we denoteGðr; TÞ, is a
correlation function of fluctuations in the mobility density.
The correlation length �ðTÞ associated with the suscepti-
bility is defined so that for k � 0, �ðk; TÞ ¼ �ðk !
0; TÞð1� k2�ðTÞ2 þOðk4ÞÞ, where �ðk ! 0; TÞ �
limk!0�ðk; TÞ.
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The recognition of the possibility of a long dynamic
correlation length in supercooled liquids has led to the
use of scaling ideas to analyze the results of theories and
data from simulations [7,12,15,19,20,22]. One scaling hy-
pothesis whose implications are equivalent to what is
currently being used in studies of dynamic heterogeneity
can be summarized in the following way. Assume that �ðTÞ
is a monotonic function of T. Hence we can write
Gðr; TÞ ¼ Gðjrj; �ðTÞÞ, where G is a function of two scalar

lengths. Assume that Gðr; �Þ ¼ b�ð1þ	ÞGðr=b;�=bÞ for
large enough values of the arguments of G on both sides.
The quantity 	 is a constant. This hypothesis implies that
for large enough values of �ðTÞ and small enough values of
k, �ðk; TÞ ¼ �ðTÞ2�	fðk�ðTÞÞ, where the scaling function
f has the properties that: fð0Þ is a finite positive number;
fðxÞ=fð0Þ ¼ 1� x2 þOðx4Þ as x ! 0; fðxÞ / x�2þ	 as
x ! 1. Hence �ð0þ; TÞ � �ðTÞ2�	; �ðk; TÞ=�ð0þ; TÞ ¼
fðk�ðTÞÞ=fð0Þ.

A distinct set of scaling results is suggested by the
inhomogeneous mode-coupling theory of Biroli et al.
[22], namely, that �ðTÞ and �ð0þ; TÞ should be propor-
tional to inverse powers of 
 � T � Tc for temperatures
above Tc: �ð0þ; TÞ � 
�, �ðTÞ � 
c where � and c are
negative numbers.

In this Letter we test the predictions of these two types of
scaling for the Lennard-Jones mixture, and we obtain nu-
merical values of the exponents 	, �, and c for dynamic
heterogeneity in both the � and � relaxation regimes.

For the study of dynamic heterogeneity in the � regime,
we choose a value of t� equal to �� at each temperature,
and we choose d ¼ 0:375, as a reasonable cutoff distance
to determine whether a particle is caged on the time scale
of interest.

At each temperature, the �ðk; TÞ data were fit to the
formula ln�ðk; TÞ ¼ ln�ðk ! 0; TÞ � �ðTÞ2k2 þ ak4.
Figure 1 shows the fit for the lowest temperature studied.

Such a quadratic function of k2 fits the data for small k at
all temperatures and provides values of �ðk ! 0; TÞ and
�ðTÞ.
The results [40] are in a log-log plot in Fig. 2. A straight

line fit to the data gives �ðk ! 0; TÞ � �4:2�0:3, providing
a test of the scaling hypothesis and an estimate [41] of the
exponent 2� 	. Figure 3 shows a scaling plot of
�ðk; TÞ=�ðk ! 0; TÞ vs k�ðTÞ with data for various tem-
peratures. If the scaling hypothesis holds, the data in the
scaling regime should lie on a common curve. There
appears to be a common curve, defined by the lowest
temperature data and smallest wave vectors, but the higher
temperature curves depart from it, the departure taking
place for smaller k� at higher temperatures. This is to be
expected, since at any temperature, going to large enough k
will involve leaving the range of k values where the scaling
equations hold.
From the temperature dependence of � and �, the ex-

ponents � and c in the scaling predictions of inhomoge-
neous mode-coupling theory were determined to be
1:12� 0:04 and 0:27� 0:03, respectively [42].
For the study of the � regime, we pick values of d� and

t� that are appropriate for the length and time scales of that
regime. For each temperature, a log-log plot of the mean
squared displacement of the A particles as a function of
time has a well-defined inflection point between the inertial
regime and the diffusive regime. The time of that inflection
point is chosen as t� and the square root of the mean
squared displacement is chosen as d�.
The correlation length and �ðk ! 0; TÞ values were

determined for each temperature. A plot similar to Fig. 2
gave the result �ðk ! 0; TÞ � �ðTÞ2:05�0:26 for the � re-
gime. A scaling plot of the wave vector dependent suscep-
tibility is in Fig. 4. The data for all temperatures follows a
common curve quite well for values of k� up to about 3,
and that curve has the shape of the Ornstein-Zernike func-
tion. Note that this function decays for large wave vector as

FIG. 1. The logarithm of the wave vector dependent suscepti-
bility � for � relaxation vs the square of the wave vector for
T ¼ 0:5.

FIG. 2. Log-log plot of the susceptibility � in the limit of zero
wave vector for � relaxation vs correlation length with data for
various temperatures.
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ðk�Þ�2. According to the scaling hypothesis discussed
above, this exponent (�2) should be equal to the negative
of the exponent in the previous equation (2:05� 0:26), and
this is in fact the case.

The log-log plots of �ðk ! 0; TÞ and �ðTÞ vs T � Tc

were not well fit by straight lines in the entire temperature
range studied. If the data for T � 0:55 is not included, the
remaining data can be reasonably well described by � �
�0:5 and c � �0:25.

The function �ðk; TÞ as defined above would be nonzero
even if the mobilities of the particles were statistically
independent of each other and of the positions of the
particles. Let us define �0ðk; TÞ to be the �ðk; TÞ evaluated
under the assumption that each particle’s mobility is sta-
tistically independent of the coordinates and the mobilities
of different particles are statistically independent. Then it

follows straightforwardly that �0ðk; TÞ ¼ 1þ
h�iðSAAðkÞ � 1Þ, where SAAðkÞ ¼ N�1

A hPNA

i;j¼1 expð�ik 	
ðri � rjÞÞi is the usual static structure factor for A particles.

Accordingly, we consider the function �1ðk; TÞ �
�ðk; TÞ � �0ðk; TÞ as being possibly a better measure of
the true correlations of mobility fluctuations. Figure 5
shows a scaling plot of �1ðk; TÞ=�1ðk ! 0; TÞ vs k�.
The data for all temperatures fall on a reasonably good
scaling curve for k� � 4. The correlation lengths implied
by �1 are systematically smaller than those obtained from
�, but they agree within the statistical error. The suscepti-
bilities calculated from �1 are systematically smaller than
those for �. The difference is temperature dependent, and
the resulting value of 2� 	 is 4:8� 0:5.
There are several ambiguities in analyzing data to test

scaling predictions, including uncertainty about what func-
tions should be tested and what range of data should be
tested. Despite these ambiguities, the dynamic heteroge-
neity data for our definitions of � is remarkably consistent
with both types of scaling over the temperature range
discussed here for both the � and � regimes. This consis-
tency with scaling behavior holds despite the fact that the
correlation lengths are not in fact much larger than the
diameter of the atoms.
The exponents obtained from this analysis (using �

rather than �1) are very consistent with the predictions of
the inhomogeneous mode-coupling theory of Biroli et al.
[22] The theory predicts, for the � regime, 2� 	 ¼ 4,
� ¼ �1, and c ¼ �1=4. For comparison, our results
are 2� 	 ¼ 4:2� 0:3, � ¼ �1:12� 0:04, and c ¼
�0:27� 0:03. The theory predicts, for the � regime, 2�
	 ¼ 2, � ¼ �1=2, and c ¼ �1=4. Our results are 2�
	 ¼ 2:05� 0:26, and the data for 0:6 � T � 0:9 are con-

FIG. 4. A scaling plot of the normalized wave vector depen-
dent susceptibility � for � relaxation as a function of reduced
wave vector for various temperatures. See Fig. 3 for more
information.

FIG. 5. A scaling plot of the normalized wave vector depen-
dent susceptibility �1 for � relaxation as a function of reduced
wave vector for various temperatures. The dotted straight line
has a slope of �4:8. This is the value of the large wave vector
slope of the scaling curve that is consistent with the relationship
between �1ðk ! 0; TÞ and �ðTÞ. See Fig. 3 for more informa-
tion.

FIG. 3. A scaling plot of the normalized wave vector depen-
dent susceptibility � for � relaxation as a function of reduced
wave vector with data for various temperatures. The dotted curve
is the Ornstein-Zernike result.
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sistent with � ¼ �1=2, and c ¼ �1=4. Moreover, the
scaling behavior of the wave vector dependent susceptibil-
ity is quite good and follows an Ornstein-Zernike curve,
which is consistent with 2� 	 � 2.

The results for the exponent 2� 	 can be compared
with the theory and simulation of kinetically constrained
models. A simulation of the Fredrickson-Andersen model
[25] in 3 dimensions gave 2� 	 ¼ 2:15 [20]. This is a
model for strong liquids. Simulations of the NEF model of
a very fragile liquid in three dimensions gave 2� 	 �
3:58 [15]. Our result of 2� 	 ¼ 4:2� 0:3 suggests that
the Lennard-Jones mixture should be regarded as a fragile
liquid.
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