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The influence of randomly distributed point impurities and planar defects on the order and transport in

type-II superconductors and related systems is considered theoretical. For random planar defects of

identical orientation, the flux line lattice exhibits a new glassy phase with diverging shear and tilt modulus,

a transverse Meissner effect, large sample to sample fluctuations of the susceptibility, and an exponential

decay of translational long range order. The flux creep resistivity for currents J parallel to the defects is

�ðJÞ � exp�ðJ0=JÞ� with � ¼ 3=2. Strong disorder enforces an array of dislocations to relax shear

strain.
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Introduction.—Type-II superconductors can be pene-
trated by an external magnetic field in the form of quan-
tized magnetic flux lines (FLs). Under the influence of a
transport current J, FLs will move and hence give rise to
dissipation. The resulting linear resistivity is proportional
to the magnetic induction B [1]. To stabilize superconduc-
tivity, it is therefore essential to pin FLs. One source of
pinning is point disorder. In high-Tc materials, point dis-
order is practically always existing because of the non-
stoichiometric composition of most materials. Then the
system regains superconductivity in the sense that the
linear resistivity vanishes [2]. However, thermal fluctua-
tions lead to flux creep resulting in a nonzero nonlinear

resistivity of the form �ðJÞ � e�ðJP=JÞ� where� ¼ 1=2 [3].
JPð� JÞ is a function of B, temperature T, and the con-
centration and strength of the pinning centers. This re-
sponse of the system on an external current is closely
related to the order of the FL lattice (FLL) in the presence
of point pinning centers, which shows a power law decay
of its translational order parameter in the ’’Bragg glass’’
phase [3–5]. Although the linear conductivity is now zero,
there is still a finite resistivity for a finite current. It is
therefore indicated to look for a more effective pinning
mechanism corresponding to larger values of the creep
exponent �. One option is columnar defects which lead
to a ’’Bose glass’’ phase with stronger pinning properties
(see, e.g., [6]).

An even more pronounced effect can be expected from
planar defects like twin planes or grain boundaries, which
will be considered in the present Letter. Twins are ubiq-
uitous in superconducting yttrium barium copper oxide and
La2CuO4 where they are needed to accommodate strains
arising from tetragonal to rhombic transformations. But
other causes are also possible (see Fig. 1). Planar defects
occur frequently in families with the same orientation but
random distances [7,8] or in orthogonal families of lamella
(’’colonies’’) [9]. The mean distance ‘D of the defect
planes is of the order of 10 nm [7] to �m [10]. Pinning
of individual FLs by planar defects has been investigated in
the past both for clean and disordered systems [2,11,12].

Recently, it was shown that depending on the mutual
orientation of the FLL and the defects, dilute planar defects
are indeed a relevant perturbation even in the presence of
point disorder [13], provided they are parallel to the main
lattice planes of the FLL. In systems with parallel defect
planes, this is the generic situation since the FLL will rotate
in such a position to reach maximum overlap with the
defects (provided B is aligned with the defect planes). It
turns out that the Bragg and the Bose glass phase are
unstable with respect to the presence of many random
planar defects and will be substituted by a new type of a
planar glass phase (see Fig. 2). In the present Letter, we
will discuss the nature of this phase. The latter is charac-
terized by a complex energy landscape with many meta-
stable states and diverging energy barriers leading to a new
creep law with � ¼ 3=2, large sample to sample fluctua-
tions of the magnetic susceptibility, an exponential sup-
pression of translational order in the direction
perpendicular to the defects, a resistance against shear
deformations, as well as the occurrence of a transverse
Meissner effect. If only displacements perpendicular to
the defects are considered, as in the main part of this
Letter, our results apply also to a wide class of systems
which exhibit regular lattices of domain walls like mag-
netic slabs, charge density waves [14], and incommensu-
rate systems [15].
Model.—We consider an Abrikosov FLL in the presence

of randomly distributed point impurities and random defect

FIG. 1. Planar crystalographic defects in bismuth strontium
calcium copper oxide (bright vertical lines).[31].
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planes, aligned with the magnetic field. Since in both types
of imperfections superconductivity is suppressed, they will
attract FLs. Then the Hamiltonian reads [16]

H ¼
Z

d3r
1

2

� X
����

c����ð@�u�Þð@�u�Þ

þX
�

cð�Þ44 ð@zu�Þ2 þ 2½VPðrÞ þ VDðrÞ��ðu; rÞ
�
(1)

where �, �, �, � run over x, y. uðrÞ ¼ ðux; uyÞ denotes the
FL displacement. Only components of the elastic con-
stants, c����, with pairwise equal indices are nonzero

[17]. �ðu; rÞ ¼ �0f�r?uþP
Ge

iGðr?�uÞg � �s þ �p is

the FL density with �0 ¼ B0=�0; �0 is the flux quantum.
G is a reciprocal lattice vector of the FLL and r? ¼ ðx; yÞ.
VPðrÞ denotes the pinning potential resulting from ran-
domly distributed point impurities. We will first consider
the (realistic) case that all defect planes have the same
orientation but random distances [7]. Then the FLL will
orient itself such that its main lattice planes will be parallel
to the planar defects to allow for their maximal overlap
[13]. The defect pinning potentials then have the form
VDðrÞ ¼ �vD

P
d�ðx� xdÞ [2] where we assumed that

the defect planes are parallel to the yz plane. The � func-
tions are considered to have a finite width of the order of
the superconductor coherence length, �c. A rough estimate
for the defect strength is given by vD � H2

c�
3
c; Hc is the

thermodynamic critical field. The statistical properties of
the pinning energies are then encoded in their pair corre-
lation functions, RPðuÞ and RDðuxÞ, for point disorder and
planar defects, respectively. Since the FLL density in-
cludes a slowly varying and a periodic part, �s and �p, re-

spectively, we decompose the pinning energy density ac-

cordingly. From the periodic part we get RDðuxÞ¼
ðvD�0Þ2=lDPn�0e

in2	ux=‘; n is an integer [18]. ‘ � ‘D,
where ‘ and ‘D are the mean spacing between the FLs and
the defect planes, respectively. The contributions from �s

do not contribute to the glassy properties of the system
since they can be eliminated by a simple transformation
[19].

Since our main concern is the defect planes, it seems to
be justified to start with a simplified model in which only
the displacements ux � u of the FLs perpendicular to the
defect planes are considered. Then only the elastic terms

with the coefficients cxxxx � c11, cyxyx � c66, and cðxÞ44 �
c44 remain in the Hamiltonian. From a technical point
of view, it is convenient to consider a generalization of
our model in d dimensions by replacing x by a ðd�
2Þ-dimensional vector x.
Weak disorder.—In the absence of defect planes, point

impurities are relevant in less than 4 dimensions. The FLL
exhibits a phase with quasilong range order: the Bragg

glass [3–5], which exhibits a power law decay of SGðrÞ ¼
heiG½uðrÞ�uð0Þ�i � jrj�ð4�dÞ. The Fourier transform of SGðrÞ
is the structure factor which has Bragg peaks.
It was recently shown in [13] that dilute planar defects

can be a relevant perturbation also in the presence of point
disorder. Indeed, distorting the initially ordered FLL in
volume Ld�2LyLz, the energy gain is of the order

�½R0000
D ð0ÞLd�2�1=2LzLy, whereas, the elastic energy loss

is c11LzLyL
d�4 since distortions are aligned parallel to

the defects. For L�LD�½c211=R0000
D ð0Þ�1=ð6�dÞ the pinning

energy gain wins and the FLL starts to disorder in the di-
rections perpendicular to the defects. The critical dimen-
sion below, which weak planar defects, are relevant is
d ¼ 6.
For a more detailed study, we now use a functional

renormalization group approach in d ¼ 6� 
 dimensions.
We follow closely a related approach for columnar dis-
order [20,21], but keep the unrescaled quantities which
correspond to the effective parameters measured on scale
L. To lowest order the flow equations for 
 � 1 read

d lncii=d lnL ¼ 2R0000
D ð0ÞL
=ð4	c11Þ2; i ¼ 4; 6;

dRDðuÞ=d lnL ¼ R00
DðuÞL
½R00

DðuÞ � 2R00
Dð0Þ�=ð4	c11Þ2:

(2)

Thermal fluctuations and point disorder are irrelevant for

 < 4 and 
 < 2, respectively. There is no renormalization
of c11 because of a statistical tilt symmetry [22]. For L !
LD, many metastable states appear and R00

Dð0Þ develops a
slope discontinuity at the origin which results in diverging
elastic constants, c44 and c66. The renormalization can
however be continued to L � LD if one imposes a small
but finite tilt of the FLL such that R0000ð0Þ has to be replaced
by R0000ð0þÞ in Eq. (2). In this case, c44 and c66 remain finite
but new terms of the form

R
2	
0 d�j�y cos�ð@yuÞ þ

�z sin�ð@zuÞj=4‘ are generated in the energy density
which dominate the energy for small u. The fixed point

function R�00
D ðu; LÞL
 ¼ ð2	c11Þ2
½‘236 � 1

3 ðu� ‘
2Þ2� for 0 	

u < ‘ is periodic in u with period ‘. The newly generated
terms renormalize according to

c�1=2
66 d�y=d lnL � c�1=2

44 d�z=d lnL � 

ffiffiffiffiffiffiffi
c11

p
‘2=12L:

(3)

�zðyÞ has the meaning of a interface tension of a domain

wall parallel to the x and y (z) axes.�z can be measured by
changing the external magnetic field by Hxx̂ which
changes the Hamiltonian by �ðB0=4	Þ

R
d3rHx@zu. To

*

*

*

*

FIG. 2. Disordered vortex lattices resulting from impurities,
columnar and planar defects of concentration nimp, ncd and npd,

respectively. In the presence of planar defects, the planar glass
phase is ultimately stable. � denotes the creep exponent.
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tilt the flux lines with respect to the z axis, Hx has to
overcome the interface energy ��z which results in a

threshold field Hx;c ¼ 8	�z‘=ð�0

ffiffiffi
3

p Þ below which FLs

remain locked parallel to the planes. This is the transverse
Meissner effect: a weak transverse magnetic field Hx is
screened from the sample. In this case c44 is infinite. Only
for Hx >Hx;c, the average tilt of the FLs becomes nonzero

and c44 stays finite. Moreover, there is a resistance against
shear of the FLL: the shear deformation @yux is nonzero

(and c66 finite) only if the shear stress �xy is larger then a

critical value �y=‘, otherwise c66 is infinite. The diver-

gence of c66 is a new property which does not exist in Bose
glass.

An infinitesimal change �Hzẑ in the longitudinal field
allows to measure the longitudinal susceptibility � ¼
B0@h@xui=@Hz. The disorder averaged susceptibility �� ¼
B2
0=4	c11 is independent of the disorder as a result of the

statistical tilt symmetry. The glassy properties of the sys-
tems can most easily be seen by the sample to sample

fluctuations of the magnetic susceptibility, �2 � ��2.

Perturbation theory gives ð�2 � ��2Þ= ��2 ¼
R0000
D ð0ÞL
=ð5c211Þ � ðL=LDÞ
, i.e., the sample to sample

fluctuations of the susceptibility grow with the scale L &
LD, d < 6 which is a signature of a glassy phase [19].

The structural correlations in this phase are obtained in
the standard way from R00

Dðu; LÞ [3] which gives

SGðx; y; zÞ � jxj�ð6�dÞ. In d 	 4 dimensions also the part
of the pinning potential related to �s becomes relevant
which gives the dominating contribution to the FL dis-
placements. Both a Flory argument [3] and more detailed
calculations for a related one-dimensional problem [23–

25] give in d ¼ 3 dimensions, SGðx; y; zÞ � e�jxj=LD . In the
related study [24], Villain and Fernandez found from a
nonperturbative renormalization-group method that for
d 	 4 the disorder renormalizes to strong coupling. We
will show below that this case gives qualitatively the same
results.

To get more information about a real three-dimensional
system, we consider next the stability of this glassy phase
with respect to point disorder by using an Imry-Ma argu-
ment [26]. The energy gain from the point disorder in a

region Ld�2LyLz is of the order �ðhRPðuÞiLyLzL
d�2Þ1=2

[27] which has to be compared with the elastic energy loss
Ld�2ðc11‘2LyLz=L

2 þ �zLy þ �yLzÞ � Ld. If one

ignores the fluctuations of u and replaces hRPðuÞi by a
constant, one finds that point disorder is irrelevant above
d ¼ 2 dimensions. This critical dimension is further de-
creased to zero if the fluctuations of u are taken into

account by using RPðuÞ � Lðd�6Þ=2. A similar argument
shows the irrelevance of columnar disorder. This argument
applies for L � LD where �y=z has developed.

Flux creep.—Next we consider the flux creep under the
influence of a transport current parallel to the defect planes
which creates a driving force density, f ¼ J ^ B=c, per-
pendicular to them. J is the current density. The motion of

the FL bundles under the influence of f occurs then by
nucleation of critical droplets in which FLs are moved by a
distance ‘. This droplet is a saddle point, as usual in
nucleation phenomena. In the presence of planar defects,
the energy of the nucleus has the from

Enucl � Ld�2LyLz

�
c11‘

2

L2
þ�z

Lz

þ�y

Ly

� f‘

�
: (4)

Here we have taken into account that the elastic energy and
the energy from the disorder scale in the same way. The
saddle point Ly=�y ¼ Lz=�x � L2=c11 � f�1 gives for

the nonlinear resistivity in d ¼ 3 (J � JD)

�ðJÞ � e�ðJD=JÞ3=2 ; JD ¼ C
ð�y�zÞ2=3ðc11=‘Þ1=3c

BT2=3
:

(5)

Thus the nonlinear resistivity is reduced considerably with
respect to the case of point impurities. A similar consid-
eration for the Bose glass gives � ¼ 1 which is, as far as
we are aware, also a new result [2].
To summarize the results obtained so far, we remark that

the new phase described here is characterized by
(i) diverging elastic constants c44 and c66 but a finite
compressibility c11, (ii) a transverse Meissner effect as
well as a resistance against shear deformation, (iii) large
sample to sample fluctuations of the susceptibility, (iv) an
exponential decay of the structural correlations (in d ¼ 3),
and (v) a creep exponent � ¼ 3=2. Since the totality of
these properties is different from the Bragg glass or the
Bose glass, we will call this new phase a planar glass. This
phase is also different from that found for equally spaced
defects which is incompressible [28].
Strong disorder.—If the disorder is strong, i.e., if LD &

‘D, (we ignore for the moment the point disorder) each
defect will be completely overlapped by a FLL plane to
gain its full energy. Integrating out the displacement field
between two adjacent defect planes we get in d ¼ 3:

H
LzLy

¼ XN
i¼1

�
c11
2

ðuiþ1 � uiÞ2
�xiþ1

� �0vD

X
n

eiGDnðxi�uiÞ
�
;

whereGD ¼ 2	=‘,�xiþ1 ¼ xiþ1 � xi, and the sum over i
is over the defect planes. For vD ! 1, we have xi � ui ¼
‘ni with ni integer to minimizes the pinning potential.
Minimizing, subsequently, the elastic energy allows the
exact determination of the ground state [25]: u0i ¼ xi �
‘
P

i
j¼1½�xj=‘�G, where ½x�G denotes the closest integer to

x. For ‘D � ‘, SGðrÞ is again decaying exponentially in
the x direction on scale ‘D. Considering flux creep due to a
driving force, f, perpendicular to the defect planes in d ¼
3, we obtain then the same form of the nonlinear resistivity
[Eq. (5)] as in the case of weak disorder. This formula
applies for small currents where droplets cover many pla-
nar defects. Thus both weak and strong disorder give the
same results for the correlations and the flux creep.
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Displacement parallel to the defects, dislocations.—
Next we include displacements, uy, parallel to the defects.

In the case of strong disorder, each defect is occupied by a
single FL layer and hence uxðxi; y; z; niÞ ¼ xi � ‘ni, 8 y,
z, to maximize the pinning energy gain. Even without point
disorder, we obtain then a nonzero displacement uy. This

can be seen most easily in the isotropic case where
�@xux ¼ �@yuy; here, � ¼ ðc11 � c66Þ=ðc11 þ c66Þ is

the Poisson number, 0<�< 1 [29]. The strain @xux in
the segment between the defects at xiþ1 and xi is @xux �
1� ‘�niþ1=�xiþ1 where �niþ1 ¼ ðniþ1 � niÞ. The dif-
ference of the strain @yuy in neighboring segments is then

�@yuy � �‘½�niþ1=�xiþ1 � �ni=�xi� which is of the

order 
�‘=‘D. On the scale Ly, this implies �uy �

�‘Ly=‘D. To avoid a diverging shear energy, one has

to allow for dislocations with Burgers vector parallel to the
y direction sitting at the defects. Their distance in the y
direction is of the order ‘D=�. Comparing the energy of an
edge dislocation piercing the crystal to the energy gain
from the disorder, we find that dislocations will be present
if �c66‘

3�c � ‘DvD. In general, the network of additional
FLL sheets spanned by the dislocations will be compli-
cated. The resulting state is ordered in the sense that�y,�z

are nonzero, and hence the transverse Meissner effect is
still present.

Adding weak point impurities will further randomly
shift the positions of the dislocation leading most likely
to decay of translational correlations in the yz plane. Since
the Burgers vector of the dislocations is always parallel to
the defects, creep in the x direction is not facilitated. �y

and �z are still both nonzero and hence we recover the
creep law, Eq. (5). To describe creep parallel to the defects,
one has to take into account the interaction between the
dislocation, a situation not considered so far [30]. We leave
this case for further studies. In the case of weak pinning,
qualitatively the same behavior can be expected on scales
Lx � LD, in particular, if the flow is again to the strong
coupling fixed point. If the samples exhibit orthogonal
families of (nonintersecting) defects, long range order in
the xy plane is destroyed even without point disorder on
scales larger than LD. The creep is now limited by the
slowest mechanism and hence Eq. (5) is likely to be valid
for all current directions in the xy plane.
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