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The common approach to crack dynamics, linear elastic fracture mechanics, assumes infinitesimal

strains and predicts a r~!/2

strain divergence at a crack tip. We extend this framework by deriving a

weakly nonlinear fracture mechanics theory incorporating the leading nonlinear elastic corrections that

must occur at high strains. This yields strain contributions “more divergent” than r

~1/2 4t a finite distance

from the tip and logarithmic corrections to the parabolic crack tip opening displacement. In addition, a
dynamic length scale, associated with the nonlinear elastic zone, emerges naturally. The theory provides
excellent agreement with recent near-tip measurements that cannot be described in the linear elastic

fracture mechanics framework.
DOI: 10.1103/PhysRevLett.101.264302

Understanding the dynamics of rapid cracks is a major
challenge in condensed matter physics. For example, high
velocity crack-tip instabilities [1,2] remain poorly under-
stood from a fundamental point of view. Much of our
understanding of how materials fail stems from linear
elastic fracture mechanics (LEFM) [3], which assumes
that materials are linearly elastic outside of a small zone
where all nonlinear and dissipative processes occur. A
central facet of LEFM is that strains diverge as r~ /2 at a
crack’s tip and that this singularity dominates all other
strain contributions in this region. Linear elasticity should
be expected to break down before dissipative processes
occur. The small size and rapid propagation velocity of the
near-tip region of brittle cracks have, however, rendered
quantitative measurements of the near-tip fields elusive.

In the companion Letter [4] such direct near-tip mea-
surements of the displacement field u(r) were achieved for
mode I cracks propagating at rapid velocities, v. Defining
(r, 0) as coordinates moving with the crack tip, the propa-
gation direction x is defined by € = 0 and the loading
direction y by 6 = 7/2. As predicted by LEFM, these
experiments revealed that the crack tip opening profile,
uy(r, ), is parabolic beyond a velocity-dependent length
scale 6(v). However, it was shown that although u (r, 6 =
0) in this range also follows the functional form predicted
by LEFM, its parameters are inconsistent with those de-
scribed by u,(r, =7). Moreover, the strain component
&y,(r,0) = d,u,(r,0) was wholly incompatible with
LEFM, indicating a “more divergent” behavior than
r~1/2. These puzzling discrepancies become increasingly
severe as v increases.

In this Letter, we show that all of these puzzles can be
quantitatively resolved by taking into account nonlinear
corrections to linear elasticity, which must be relevant near
the crack tip. This is achieved by perturbatively expanding
the momentum balance equation for an elastic medium up
to second order nonlinearities in the displacement gra-
dients. The resulting theory provides a novel picture
of the structure of the fields surrounding a crack tip, and
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may have implications for our understanding of crack
dynamics.

Nonlinear material response at the large strains near a
crack’s tip motivates us to formulate a nonlinear elastic
dynamic fracture problem under plane stress conditions.
Consider the deformation field ¢b, which is assumed to be a
continuous, differentiable, and invertible mapping between
a reference configuration x and a deformed configuration
x' such that x' = ¢(x) = x + u(x). The deformation gra-
dient tensor F is defined as F = V¢ or explicitly F;; =
0;; T d;u;. The first Piola-Kirchhoff stress tensor s, that is
work-conjugate to the deformation gradient F, is given as
s = dpU(F), where U(F) is the strain energy in the de-
formed configuration per unit volume in the reference
configuration [5]. The momentum balance equation is

V:s=pi,d, (1)

where p is the reference mass density. Under steady-state
propagation conditions we expect all of the fields to depend
on x and ¢ through the combination x — vt and, therefore,
d, = —vd,. The polar coordinate system that moves with

the crack tip is related to the rest frame by r =

Jx—vt)> +y* and 0 =tan" ![y/(x — vt)]. Thus, the

traction-free boundary conditions on the crack faces are
Sy(r, 0 = *a) = s,,(r,0 = +m) = 0. 2)

To proceed, we note that in the measurement region of
[4] the maximal strain levels are 0.2-0.35 (see below) as
the velocity of propagation varied from 0.20c; to 0.78c;,
where ¢, = 4/u/p is the shear wave speed (u is the shear
modulus). These levels of strain motivate a perturbative
approach where quadratic elastic nonlinearities must be
taken into account. Higher order nonlinearities are ne-
glected below, though they most probably become relevant
as the crack velocity increases. We write the displacement
field as

u(r,0)=euV(r, 0) + €u?(r, 0) + O(3), ((3)
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where € quantifies the (dimensionless) magnitude of the
strain. For a general U(F), s and ¢ can be expressed in
terms of u of Eq. (3). Substituting these in Egs. (1) and (2)
one can perform a controlled expansion in orders of €.

To make the derivation concrete, we need an explicit
U(F) that corresponds to the experiments of [4]. The
polymer gel used in these experiments is well described
by a plane stress incompressible neo-Hookean constitutive
law [6], defined by the energy functional [7]

U(F) = %[FUFI-]- + det(F)™2 - 3], )

Using this explicit U(F), we derive the first order prob-
lem in €

wV2uV +3uV(V - u) = piiV), (5
with the boundary conditions at § = *7
4r_169u§1) + 28,149) =0.
(6)

This is a standard LEFM problem [3]. The near crack-tip
(asymptotic) expansion of the steady-state solution for
mode I symmetry is [3]

raul) + a,u§” =0,

eufcl)(r, 0;v) =

K\Jr Tr cosf
Q. (0;v) + ——— + O(P7?),
4p~N2m ) 3u

K \Jr Tr sinf
Q,(0;v) — + O>3/?).
4u~2m 6

euy)(r 0;v) =

(N

Here K; is the mode I “stress intensity factor” and 7T is a
constant known as the “T stress.” Note that these parame-
ters cannot be determined by the asymptotic analysis as
they depend on the global crack problem. Q(6;v) is a
known universal function [3,8]. € in Eq. (3) can be now
defined explicitly as € = K;/[4u+/27€(v)], where €(v) is
a velocity-dependent length scale. €(v) defines the scale
where only the order € and €? problems are relevant. It is a
dynamic length scale that marks the onset of deviations
from a linear elastic constitutive behavior.

The solution of the order € equation, i.e., Eq. (7), can be
now used to derive the second order problem in €. The
form of the second order problem for an incompressible
material is

0g(6;
wV2u® +3V(V - u®) + w — pii?®,  (8)

where contributions proportional to 7" are neglected. The
boundary conditions at § = =7 become

= 0.
()]

Here g(0; v) and «(v) are known functions given in [8].
The problem posed by Egs. (8) and (9) has the structure
of an effective LEFM problem with a body force « 2 and

©2) n K(U)€
r

r_lc')()uiz) + 8ru(y2) = 4r_189u§,2) + 20,uy

a crack face force o« r~!. Note that Egs. (8) and (9) are
valid in the range ~€(v), where €’ is non-negligible with
respect to €, but higher order contributions are negligible.
Since one cannot extrapolate the equations to smaller
length scales, no real divergent behavior in the r — 0 limit
is implied. We stress that the structure of this problem is
universal. Only g(6;v) and «(v) depend on the second
order elastic constants resulting from expanding a general
U(F) to second order in €. For example, the « r~2 effective
body force in Eq. (8) results from generic quadratic non-
linearities of the form a(duV duV).

We now focus on solving Eq. (8) with the boundary
conditions of Eq. (9) for the explicit g(6;v) and «(v)
derived from Eq. (4) [8]. Our strategy is to look for a
particular solution of the inhomogeneous Eq. (8) without
satisfying the boundary conditions of Eq. (9) and then to
add to it a solution of the corresponding homogeneous
equation that makes the overall solution consistent with
the boundary conditions. We find that the inhomogeneous
solution, Y(#;v), is r independent. The homogeneous
solution is obtained using a standard approach [3] by
noting that the second boundary condition of Eq. (9)
requires that its first spatial derivative scales as r~!. The
second order solution for mode I symmetry is

A v2sin?6
2u§2) r,0;v —( ) [Alo r+—10 (1—7)
(r,0;v) NG f g g 2

v2sin?6
g(l_ c? )
S

+ Yx(ﬁ;v)],

K
ezu(z) r,0;v =( d
y (n6:) du2m

tand,;; =

2
) [—Aadﬁd - BGY + Yy(H,v)],

ag tand, o2 =1-v2/c%,  (10)

where A = [2a,B — 40,Y ,(m;v) — k(v)]/(2 — 4a3) [cf.
Eq. (9)] and ¢, is the dilatational wave speed. ¢; = 2c¢, in
an incompressible material under plane stress conditions.

The analytic form of Y(8; v) depends mainly on g(6; v).
The latter can be represented as

N(v) N(v)
g.(0:v)= > a,(v)cos(nd), g,(0;v)= b,(v)sin(nh).
n=1

n=1
(11)

For v = 0 we have N(0) = 3 and the representation is
exact, while for higher velocities it provides analytic ap-
proximations with whatever accuracy needed. For v =
0.8c, only seven terms provide a representation that can
be regarded exact for any practical purpose [8]. Y(6; v) is
then obtained in the form

N(v) N(v)

Y,(0;v)= Z c,(v)cos(nd), Y,(6;v)= Z d,(v)sin(nd),

n=1 n=1
(12)
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where the unknown coefficients are determined by solving
a linear set of equations [8]. A striking feature of Eq. (10) is
that they lead to strain contributions that vary as r~!, which
are “more singular” than the r~'/? strains predicted by
LEFM.

We now show that the second order solution of Eq. (10)
entirely resolves the discrepancies raised by trying to
interpret the experimental data of [4] in the framework of
LEFM. The complete second order asymptotic solution,
Egs. (3), (7), and (10), contains three parameters (K;, T,
and B) that cannot be determined from the asymptotic
solution and therefore must be extracted from the experi-
mental data.

These parameters were chosen such that Eqgs. (3), (7),
and (10) properly describe the measured u,(r,0).
Examples for v/c, = 0.20, 0.53, and 0.78 are provided in
Fig. 1 (top). With K;, T, and B at hand, we can now test the
theory’s predictions for &,,(r, 0) with no adjustable free
parameters. The corresponding results are compared with
both the measured data [4] and LEFM predictions in Fig. 1
(bottom). In general, the agreement with the experimental
data is excellent. These results demonstrate the importance
of the predicted r~! strain terms near the crack tip. € is
estimated as the scale where the largest strain component
reaches values of 0.10-0.15. For the data presented in
Fig. 1(a), €,, > &,,, where &,, = d,u, is obtained by
differentiating u,. Thus, € can be read off of the bot-
tom panel to be ~0.5-1 mm. Similar estimates can be
obtained for every v, though not always does &,, > &,,,
e.g., Fig. 1(c).

For v = 0.53¢, [Fig. 1(b)] the theory still agrees well
with the measurements, although some deviations near
the tip are observed. These deviations signal that higher
order corrections may be needed, though second order
nonlinearities still seem to provide the dominant correc-
tion to LEFM. For higher velocities, it is not clear, a priori,
that second order nonlinearities are sufficient to describe
the data. In fact, the strain component &,.(r, 0) for v =
0.78¢, reaches a value of ~0.35 in Fig. 1(c), suggesting

that higher order nonlinearities may be important.
Nevertheless, the second order theory avoids a funda-
mental failure of LEFM; at high velocities (v > 0.73c,
for an incompressible material) LEFM predicts [dashed
line in Fig. 1(c)] that the contribution proportional to K;
in €,,(r, 0) [derived from Eq. (7)] becomes negative. This
implies that &,,(r,0) decreases as the crack tip is ap-
proached and becomes compressive. This is surprising,
as material points straddling y = 0 must be separated
from one another to precipitate fracture. Thus, the second
order nonlinear solution (solid line), though applied be-
yond its range of validity, already induces a qualitative
change in the character of the strain. This is a striking
manifestation of the breakdown of LEFM, demonstrat-
ing that elastic nonlinearities are generally unavoidable,
especially as high crack velocities are reached. The results
of Figs. 1(a)-1(c) both provide compelling evidence in
favor of the developed theory and highlight inherent
limitations of LEFM. We note that €(v) increases with
increasing v, reaching values in the millimeter scale at
very high v.

Our results indicate that the widely accepted assumption
of “K dominance” of LEFM, i.e., that there is always a
region where the r~!/2 strain term dominates all other
contributions, is violated here. The results presented in
Fig. 1 explicitly demonstrate that quadratic nonlinearities
become important in the same region where a non-
negligible T stress exists. As elastic nonlinearities inter-
vene before the r~1/2 term dominates the strain fields, the
contributions of both of these terms must be taken into
account as one approaches the crack tip. Since values of the
T stress and of B are system specific, this observation is
valid for the specific experimental system under study.
They do indicate that the assumption of “K dominance”
is not always valid.

An additional puzzle raised in [4] was that although the
form of both u,(r, 0) and the crack tip opening displace-
ment (CTOD) agreed with LEFM, the respective derived
values of K; differed by about 20%, cf. Fig. 3a in [4]. This

FIG. 1 (color online). Top: Measured
u,(r,0) (circles) fitted to the x compo-
nent of Eq. (3) (solid line) for (a) v =
0.20c, with K, = 1070 Pa\/m, T =
—3150 Pa, and B = 18; (b) v = 0.53¢;

with K; = 1250 Pa\/m, T = —6200 Pa,
and B = 7.3; (¢c) v = 0.78¢, with K; =
980 Pa\/m, T = —6900 Pa, and B = 26.

Bottom: Corresponding measurements
of &,,(r,0) = d,u,(r,0) (circles) com-
pared to the theoretical nonlinear solu-
tion [cf. Eq. (3)] with no adjustable
parameters (solid lines); K;, T, and B
are taken from the fit of u,(r, 0). LEFM

predictions (analysis as in [4]) were
added for comparison (dashed lines).
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FIG. 2 (color online). Measured crack-tip profiles [¢,(r, )
vs ¢ .(r, 7)] (circles). Shown are the parabolic LEFM best fit
(dashed line) and the profiles predicted by the second order
nonlinear corrections (solid line). (a) v =0.2¢; and
(b) v =0.53¢,. T and B are as in Fig. 1. In contrast to the
~20% discrepancy in values of K; obtained in [4], the respective
values K; = 1170 Pay/m and K; = 1300 Pa\/m correspond to
within 9% and 4%, respectively, of K; obtained from u,(r, 0)
using the nonlinear theory, cf. Fig. 1.

puzzle is resolved by the theory as follows. The form of the
CTOD is given by g{)y(r, *+17) as a function of the distance,
¢ (r, ), from the crack tip in the moving (laboratory)
frame. Substituting # = 7 into Egs. (3), (7), and (10), the
nonlinear theory predicts that the CTOD remains para-
bolic, where the log(r) term in ¢.(r, w) is negligible
compared to r. This occurs at the same scale €(v) at which
nonlinear corrections are essential to describe the strain at
6 = 0, cf. Fig. 1. Quantitatively, the parabolic CTOD can
be described with K; values that differ from those describ-
ing u,(r, 0) by only a few percent with the same values of T
and B (cf. Fig. 1). This small K; variation is possibly
related to subleading nonlinear corrections associated
with the T stress and will be addressed elsewhere.

Let us now consider the CTOD in the near vicinity of the
crack tip, i.e., when r is further reduced. Equations (10)
predict the existence of log terms in ¢ ,(r, #). These terms,
which are negligible at 6 = 7 on a scale €(v), must
become noticeable at smaller scales. Although this region
is formally beyond the range of validity of the expansion of
Eq. (3), we would still expect the existence of a CTOD
contribution proportional to logr to be observable. We test
this prediction in Fig. 2 by comparing the measured small-
scale CTOD to both the parabolic LEFM form and the
second order nonlinear solution with no adjustable parame-
ters. We find that these log terms, whose coefficients were
determined at a scale €(v), capture the initial deviation
from the parabolic CTOD at 6§ = =7 to a surprising
degree of accuracy. This result lends further independent
support to the validity of Eq. (10).

In summary, we have shown that the second order
solution presented in Eq. (10) resolves in a self-consistent
way all of the puzzles that were highlighted in [4]. As this
is accomplished without dissipation, this result suggests

that elastic nonlinearities are the dominant correction to
LEFM at these scales. This solution is universal in the
sense that its generic properties are independent of geome-
try, loading conditions, and material parameters. We would
entirely expect that any material subjected to the enormous
deformations that surround the tip of a crack must experi-
ence at least quadratic elastic nonlinearities, prior to the
onset of the irreversible deformation that leads to failure.
Our results show that these deformations, which are the
vehicle for transmitting breaking stresses to crack tips,
must be significantly different from the LEFM description,
especially at high v.

One may ask why we should not consider still higher
order elastic nonlinearities. We surmise that quadratic
elastic nonlinearities may be special, as they mark the
emergence of a dynamic length scale €(v) that character-
izes a region where material properties—Ilike local wave
speeds, local response times, and anisotropy—become
deformation dependent. This line of thought seems con-
sistent with the observations of Ref. [9]. As supporting
evidence for this view, we note that the geometry-
independent wavelength of crack path oscillations dis-
cussed in [2,10] seems to correlate with the millimeter
scale €(v) at high v. Therefore, our results may have
implications for understanding crack-tip instabilities.
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