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We consider oscillator ensembles consisting of subpopulations of identical units, with a general

heterogeneous coupling between subpopulations. Using the Watanabe-Strogatz ansatz, we reduce the

dynamics of the ensemble to a relatively small number of dynamical variables plus constants of motion.

This reduction is independent of the sizes of subpopulations and remains valid in the thermodynamic

limits. The theory is applied to the standard Kuramoto model and to the description of two interacting

subpopulations, where we report a novel, quasiperiodic chimera state.
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Large populations of coupled oscillators occur in a
variety of applications and models of natural phenomena,
ranging from collective dynamics of multimode lasers and
Josephson junction arrays to the pedestrian synchrony [1];
the analysis of the dynamics of these systems is a topic of
high interest. Even in the context of the simplest, paradig-
matic case of globally (all-to-all) connected, sine-coupled
phase oscillators (the famous Kuramoto model and its
generalizations), many problems remain yet unsolved, es-
pecially those related to a heterogeneous coupling and
nontrivial collective dynamics. In this Letter, we treat an
important case of a hierarchically organized population. It
can be viewed as a (finite or infinite) collection of interact-
ing subpopulations, each consisting of a (finite or infinite)
number of identical units; sizes of the subpopulations and
couplings between them are generally different (cf. [2,3],
and references therein). Using the seminal approach of
Watanabe and Strogatz (WS) [4], we demonstrate that
each subpopulation can be described by only three dynami-
cal variables plus constants of motion, determined by
initial conditions. This partial integrability allows us to
separate the full dynamics into a relatively small number
of generally dissipative modes (their number is propor-
tional to the number of subpopulations) with possibly non-
trivial behavior and the constants of motion. In the
thermodynamic limit where the number of subpopulations
tends to infinity, we describe the ensemble by integral
equations. Remarkably, these equations contain as a par-
ticular case the recent ansatz by Ott and Antonsen
(OA) [3], which corresponds to the uniform distribution
of the constants of motion. With our general formulation
we extend the OA ansatz and determine the conditions of
its validity. Furthermore, using derived equations, we re-
vise the recent analysis of two interacting subpopulations
by Abrams et al. [5], where the authors found periodic
chimera states using the OA ansatz. Again, with our theory
we go beyond this ansatz to the most general case of
nonuniformly distributed constants of motion and demon-
strate that the dynamics of chimera states is generally
quasiperiodic.

Our basic model is a generalization of the Kuramoto
model [1] (cf. [2,3]):

d�a
k

dt
¼ !a þ 1

N

XM
b¼1

XNb

j¼1

"a;b sinð�b
j ��a

k � �a;bÞ: (1)

Here we denote the subpopulations by indices a; b ¼
1; . . . ;M. Variable �a

kðtÞ is the phase of oscillator k in

subpopulation a; k ¼ 1; . . . ; Na, where Na is the size of
the subpopulation, and !a is the natural frequency of its
oscillators (we remind the reader that all oscillators in a
subpopulation are identical). The total number of oscilla-
tors is N ¼ P

Na, and two constants " and � describe the
coupling with an arbitrary phase shift; cf. [6]. The system
can be rewritten as

d�a
k

dt
¼ !a þ ImðZae

�i�a
k Þ; (2)

Za ¼
X
b

nb"a;be
�i�a;brbe

i�b ; (3)

where Za is the effective force acting on the oscillators of
subpopulation a. Here we have introduced the relative
population sizes na ¼ Na=N and the complex mean fields
for each subpopulation

Xa þ iYa ¼ rae
i�a ¼ N�1

a

XNa

k¼1

ei�
a
k : (4)

Note that all oscillators in a subpopulation obey the same
equation, though generally they have different initial con-
ditions �a

kð0Þ. Thus, we can apply to each subpopulation

the WS ansatz [4] that reduces the dynamics of the sub-
population to that of three variables �aðtÞ, �aðtÞ, and
�aðtÞ, via the transformation

tan

�
�a

k ��a

2

�
¼ 1� �a

1þ �a

tan

�
c a

k ��a

2

�
(5)

containing Na constants c
a
k , which are directly determined

from the initial state �a
kð0Þ and additionally satisfy

XNa

k¼1

cosc a
k ¼

XNa

k¼1

sinc a
k ¼ 0: (6)
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Because of an arbitrary shift of constants c k with respect
to �, only Na � 3 of constants c a

k are independent. The

WS method is valid generally, provided the number of os-
cillators in a subpopulation is larger than 3, and the initial
state does not have too large clusters; see [4] for a detailed
discussion of these conditions and of how �að0Þ, �að0Þ,
�að0Þ, and c a

k can be computed from �a
kð0Þ. With account

of Eq. (3), we write the WS equations for our setup as

d�a

dt
¼ 1� �2

a

2
ReðZae

�i�aÞ; (7)

d�a

dt
¼ 1� �2

a

2�a

ImðZae
�i�aÞ; (8)

d�a

dt
¼ !a þ 1þ �2

a

2�a

ImðZae
�i�aÞ: (9)

In order to illustrate the physical meaning of the new
variables, let us consider how they characterize the distri-
bution of the phases of a subpopulation. Generally, oscil-
lators form a bunch, and the amplitude � characterizes its
width: � ¼ 0, if the distribution is uniform (asynchrony),
and � ¼ 1, if the distribution shrinks to the � function (full
synchrony). Amplitude � is roughly proportional to the
amplitude of the mean field r [see Eq. (4)] in the sense that
� ¼ r ¼ 0 for the full asynchrony and � ¼ r ¼ 1 for the
full synchrony. For intermediate cases, these quantities
generally differ and coincide only in a special case, out-
lined below. The phase variable � characterizes the posi-
tion of the bunch and is therefore related to the phase of the
mean field: � � �. Another phase variable � describes
the shift of individual oscillators with respect to the bunch
(see Fig. 3 in [4]; generally, the oscillators can move with a
velocity different from that of the bunch [7]).

The set of Eqs. (7)–(9) is a straightforward generaliza-
tion of the WS equations [4] to the case of M interacting
subpopulations. For a further analysis, and, in particular,
for the consideration of the thermodynamic limit, it is
convenient to introduce new variables, a phase shift �a ¼
�a ��a, and a complex bunch amplitude za ¼ �ae

i�a .
Then we can rewrite Eqs. (7)–(9) as

dza
dt

¼ i!aza þ 1

2
Za � z2a

2
Z�
a; (10)

d�a
dt

¼ !a þ Imðz�aZaÞ: (11)

Next, we have to represent the complex force Za [see
Eq. (3)] in terms of new variables. For this goal it is
convenient to rewrite Eq. (5) in an equivalent form ei�k ¼
ei�ð�ei� þ eic kÞ=ð�eic k þ ei�Þ. Substituting this into
Eq. (4), we obtain

rae
i�a ¼ �ae

i�a�aðza; �aÞ ¼ za�aðza; �aÞ;

�aðza; �aÞ ¼ 1

Na

XNa

k¼1

1þ jzaj�2z�aeið�aþc a
k
Þ

1þ z�aeið�aþc a
k
Þ :

(12)

From Eq. (10) it follows that the dynamics of the com-
plex bunch amplitude of a subpopulation za is determined

by the force Za, resulting from interaction within the
subpopulation as well as from interaction with other sub-
populations. Contributions to Za are proportional to the
relative weights nb, to the coupling constant "e�i�, and to
the complex mean field �bðzb; �bÞzb, which generally de-
pends not only on the global variables �b and zb but also on
the constants of motion c b

k . Equations (10) and (11), as

well as equivalent Eqs. (7)–(9), together with the defini-
tions (3) and (12) are exact and complete; they show that
the dynamics of a hierarchical ensemble of oscillators can
be reduced to 3M ordinary differential equations (ODEs)
plus N � 3M constants of motion.
In most applications of the theory, one treats infinite

ensembles [1], and thus we discuss how a thermodynamic
limit N ! 1 can be introduced in this picture. There are
two main ways of performing this.
(i) Suppose that the number of subpopulations M re-

mains finite, but their sizes grow N;Na ! 1 in a way that
na ¼ const. In this case only Eq. (12) is affected and
should be now written as an integral

�aðza; �aÞ ¼
Z �

��

1þ jzaj�2z�aeið�aþc Þ

1þ z�aeið�aþc Þ �aðc Þdc : (13)

Here�aðc Þ is the distribution of the constants of motion c
in the subpopulation a, and additionally it satisfies [cf. (6)]

Z �

��
�aðc Þeicdc ¼ 0: (14)

In this limit the ensemble is described by a set of 3M
ODEs, where the right-hand sides depend on the variables
via integrals (13). The integrals of motion are now the
functions �aðc Þ.
(ii) In another limiting case, we keep the size of each

subpopulation Na finite but let the number of subpopula-
tions grow M ! 1. Considering indices a and b as con-
tinuous variables, we write instead of Eq. (3)

ZðaÞ ¼
Z

dbnðbÞ"ða; bÞe�i�ða;bÞ�ðbÞzðbÞ: (15)

Now Eqs. (10)–(12) and (15) become a system of integral
equations; still it is simpler than the original Eq. (1) as at
each value of the continuous parameter a we have only
three real time-dependent variables.
Certainly, one can also perform both thermodynamic

limits simultaneously. Then the ensemble is described by
the system (10), (11), (13), and (15).
Remarkably, Eq. (10) coincides with the basic equation

of OA theory [3]; however, there it appears without
Eq. (11). To clarify this issue, we study an important
case when Eqs. (10) and (11) decouple. To this end we
represent the fraction in Eqs. (12) and (13) as a series

�a ¼ 1þ ð1� jzaj�2ÞX1
l¼2

Ca
l ð�z�aei�aÞl; (16)

where complex constants Ca
l depend only on the distribu-

tion of the constants of motion
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Ca
l ¼

1

Na

XNa

k¼1

eilc
a
k or Ca

l ¼
Z �

��
�aðc Þeilc dc ; (17)

and we used that Ca
1 ¼ 0 due to Eqs. (6) and (14).

Obviously, the governing equations simplify, if Ca
l ¼ 0

for l � 2 and all a, and, hence, � ¼ 1. Then the force Z
does not depend on the phase variable � , and Eq. (10)
decouples from Eq. (11). It is easy to see from Eqs. (17)
that Ca

l , which are in fact Fourier coefficients of the dis-

tribution of the constants of motion c , vanish in the
thermodynamic limit of type (i), if �ðc Þ ¼ 1=2�.
However, if the number of oscillators in a subpopulation
Na is finite, then, even for a uniform spreading of c k, the
discrete sum in (17) yields jCa

l j ¼ 1, argðCa
l Þ ¼ c a

1 , for

l ¼ Na, 2Na; . . . , and we get

�a ¼ 1þ 1� jzaj2
1� ½�z�aeið�aþc a

1
Þ�Na

½�z�aeið�aþc a
1
Þ�Na: (18)

Thus, the deviation of �a from unity is exponentially small
in the size of the subpopulation and, therefore, can be
neglected for large Na. This is exactly the case where the
complex bunch amplitude � is equal to the mean field
amplitude r, because in (12) � ¼ 1.

Hence, for the uniform distribution of constants of mo-
tion c , ensemble (1) admits a simplified description via
Eq. (10), supplemented by an equation for Za, either in a
discrete or in a continuous [for the thermodynamic limit of
type (ii)] form:

Za ¼
X
b

nb"a;be
�i�a;bzb; (19)

ZðaÞ ¼
Z

dbnðbÞ"ða; bÞe�i�ða;bÞzðbÞ: (20)

A relation between the distribution of the original phases
�k and the uniform distribution of constants of motion c k

follows from Eq. (5): One can see that different distribu-
tions of the phases �k, parametrized by different values of
�, correspond to the uniformly distributed constants c k.

As a first application of our framework, we apply
Eqs. (10)–(12) and (15) to the classical Kuramoto problem
(cf. [3]). We set "ða; bÞ ¼ " ¼ const, � ¼ 0, use the fre-
quency as the subpopulation index, a ¼ !, and perform
the thermodynamic limit (ii). As a result, in the case when
� ¼ 1 and the variable � (as well as the constants of
motion) do not influence the dynamics, we obtain exactly
Eqs. (10) and (20), derived recently by Ott and Antonsen
[3] under an assumption of a certain parametrization of the
phase distribution. Considering the Lorentzian distribution
of natural frequencies nð!Þ ¼ ½�ð!2 þ 1Þ��1 and using
analytic properties of zð!Þ as a function of complex fre-
quency !, OA have calculated the integral in Eq. (20) by
the residue of the pole at ! ¼ i and have obtained Z ¼
"zðiÞ. Substituting Z into Eq. (10) for ! ¼ i, OA derived a
closed equation for ~Z ¼ Z=", i.e., for the usual Kuramoto
mean field of the whole population

_~Z ¼
�
�1þ "

2

�
~Z� "

2
j ~Zj2 ~Z; (21)

solved it, and in this way obtained explicitly the evolution
of the mean field.
From our derivation of the equations of motion, we

conclude that the particular ansatz used in Ref. [3] corre-
sponds to the case of uniformly distributed constants of
motion c k, which is equivalent to vanishing Fourier co-
efficients Cl. Next we discuss what changes if the distri-
bution of constants c k is not uniform, i.e., Cl � 0. Let us
treat the effect of nonvanishing coefficients Cl perturba-
tively, assuming that in the first approximation the OA
ansatz is valid. Considering for simplicity the effect of
C2 � 0 only, we obtain a correction to the mean field by
substituting (16) into (15):

�Z � "
Z

d!
z�ð!Þ½jzð!Þj2 � 1�ei2�ð!ÞC2ð!Þ

�ð!2 þ 1Þ : (22)

Calculation of this integral by the residue yields

�Z � "z�ðiÞ½jzðiÞj2 � 1�ei2�ðiÞC2ðiÞ: (23)

From Eq. (11) it follows that in the first approximation
�ðiÞ ¼ �0 þ it. Therefore�Z / e�2t. We conclude that the
contribution of a nonuniform distribution of constants c k

results in an exponentially decaying correction to the mean
field. The characteristic time scale of this decay is 1=2, to
be compared with the characteristic time scale of the
evolution of the mean field, which, according to Eq. (21),
is ð"=2� 1Þ�1. Thus, close to criticality "c ¼ 2, the ap-
proximation of vanishing constants Cl works well after
short transients; this is not surprising as near a bifurcation
point the dynamics is typically effectively low-
dimensional, dominated by a few normal modes. Far
from criticality the time scale separation is not valid and
the dynamics is generally high-dimensional.
As a second example, we extend recent results of

Abrams et al. [5]. They studied two coupled subpopula-
tions of identical oscillators, i.e., model (1) with a ¼ 1; 2,
!1 ¼ !2, N1 ¼ N2, and heterogeneous coupling "1;1 ¼
"2;1 ¼ 2	, "1;2 ¼ "2;1 ¼ 2
, and �a;b ¼ �, where 
 ¼
1�	. Using the OA ansatz [3], Abrams et al. derived
equations for the complex order parameters z1;2 and ana-

lyzed the so-called chimera state, where, e.g., the first
subpopulation is fully synchronized (�1 ¼ 1), whereas
the other one is only partially synchronized (�2 < 1);
they have found both static and time-periodic solutions
for �2. With our approach we describe the system exactly,
by writing six Eqs. (7)–(9) for both subpopulations. Since
we are interested in the chimera state in the second sub-
population, the first, synchronous one is described by its

phase �1 only. In this case Z1 ¼ 	eið�1��Þ þ

Aeið�2þ���Þ and Z2 ¼ 
eið�1��Þ þ	Aeið�2þ���Þ, where

Að�2;�2Þei�ð�2;�2Þ ¼ 1

N2

XN2

k¼1

�2e
i�2 þ eic

ð2Þ
k

ei�2 þ �2e
ic ð2Þ

k

: (24)
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Next, we note that the dynamics depends only on the phase
difference � ¼ �1 ��2 and, hence, write a closed system
of three equations:

d�2

dt
¼ 1� �2

2

2
½	A cosð�� �Þ þ 
 cosð�� �Þ�; (25)

d�

dt
¼�	

�
sin�þ 1þ�2

2

2�2

A sinð���Þ
�

þ


�
A sinð�����Þ� 1þ�2

2

2�2

sinð���Þ
�
; (26)

d�2

dt
¼ 1� �2

2

2�2

½	A sinð�� �Þ þ 
 sinð�� �Þ�: (27)

Following Abrams et al. [5], we take a thermodynamic
limit N2 ! 1. Next, we take a uniform distribution of the

constants c ð2Þ [which enter only via the relations (24)]—
we remind the reader that this choice corresponds to the
restriction imposed by OA on the phase distribution in their
ansatz. Then from Eq. (24) it follows that A ¼ �2 ¼ r2,
� ¼ 0, and equations for �2 and � decouple from Eq. (27).
The obtained Eqs. (25) and (26) constitute exactly the
system analyzed in [5]. For a nonuniform distribution of

c ð2Þ
k , we have to analyze the full three-dimensional system

(25)–(27), which certainly can exhibit more complex
solutions.

To verify our theoretical prediction, we have performed
numerical simulations of the ensemble (1) for the same
parameters, where Abrams et al. obtained stationary and
time-periodic solutions, but for different distributions of
the constants c k. Namely, we took c k, uniformly distrib-

uted in the range �q� < c ð2Þ
k < q�, where q � 1 is a

parameter. For q ¼ 1 we have reproduced the results of
Ref. [5], while for q < 1 the dynamics attains an additional
time dependence and becomes periodic and quasiperiodic,
respectively (see Fig. 1).
In conclusion, we have performed the exact reduction of

the dynamics of hierarchically organized populations of
coupled oscillators. Because of the partial integrability,
only three dynamical variables remain relevant for each
subpopulation, and all others are constants of motion. We
have demonstrated the power of our formalism by consid-
ering two different thermodynamic limits. The first case of
infinitely many subpopulations covers, in particular, the
Kuramoto problem. Here we have demonstrated that for a
particular case of uniformly distributed constants of mo-
tion the governing equations decouple and reduce to the
recently found particular ansatz of Ott and Antonsen [3].
Considering another thermodynamic limit of two infinitely
large subpopulations, we applied our framework to the
model by Abrams et al. [5] and revealed the existence of
novel, quasiperiodically breathing chimera states. Further-
more, the method can be in a straightforward way extended
to the cases of nonlinearly coupled populations [7], exter-
nally forced ensembles, etc. In these cases even a chaotic
dynamics of the global variables can be expected. The
main limitation of the theory is that the coupling in
Eq. (1) has a sine form.
We acknowledge financial support from DFG
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FIG. 1 (color online). Simulation of ensemble (1) for N1 ¼
N2 ¼ 64, � ¼ �=2� 0:1, and different distributions of con-

stants of motion c ð2Þ
k . Mean fields X2 and Y2 are defined by

Eq. (4). (a) 	 ¼ 0:6; uniform distribution of c ð2Þ
k results in the

steady state (black plus) (cf. [5]), whereas nonuniform distribu-
tions with q ¼ 0:9 and q ¼ 0:7 yield limit cycle solutions (bold
red and blue solid lines, respectively). (b)–(d) 	 ¼ 0:65; uni-

form distribution of c ð2Þ
k yields a limit cycle solution (b) (cf. [5]),

whereas for (c) q ¼ 0:9 and for (d) q ¼ 0:7 we observe a new
type of the chimera state with a quasiperiodic dynamics.
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