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We present a nonlinear mechanism(s) which may be an alternative to a missing wave speed: it induces

patterns with a compact support and sharp fronts which propagate with a finite speed. Though such

mechanism may emerge in a variety of physical contexts, its mathematical characterization is universal,

very simple, and given via a sublinear substrate (site) force. Its utility is shown studying a Klein-Gordon

�utt þ ½�0ðuxÞ�x ¼ P0ðuÞ equation, where �0ð�Þ ¼ �þ ��3 and endowed with a subquadratic site

potential PðuÞ � j1� u2j�þ1, 0 � �< 1, and the Schrödinger iZt þr2Z ¼ GðjZjÞZ equation in a plane

with GðAÞ ¼ �A�� � �A2, 0< � � 1.
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Introduction.—With a few notable exceptions such as
the electromagnetic or acoustic waves, the majority of
model equations describing waves in complex systems,
whether a Gaussian response to a thermal source, or soli-
tary waves in solids, beget patterns plagued by infinite
precursors. This may be a reflection of our limited model-
ing ability and/or shortcoming of mathematics to describe
physics.

However, one may reverse the issue and on a fundamen-
tal level inquire whether there are alternative mechanisms
to the missing characteristic wave speed which also induce
waves with a sharp front and a compact support. Since,
mathematically speaking, on the front of such a wave
analyticity is lost, the prospective mechanism(s) has to
induce singular features which break the analytical spell
of waves like solitons which, in spite of being localized,
extend indefinitely. To see how those dictates may translate
into physics, let us consider a simple setting of diffusion
and radiation in plasma

Tt ¼ ½DðTÞTx�x � �Tm; � � 0; (1)

T is the temperature and DðTÞ a coefficient of thermal
diffusion. If DðTÞ> 0 and m> 1, Eq. (1) describes a
conventional diffusive-radiative process. Let us first ignore
radiation, � ¼ 0, but assume DðTÞ � Tn, n > 0, (n ¼ 5=2
in a fully ionized case); then at the ground state DðTÞ
degenerates. This induces thermal waves with sharp fronts
that expand at a finite speed into the cold ambience, rather
than the usual immediate spread [1]. Projecting the com-
pacting effect of degeneracy elsewhere, one finds that a
degenerating nonlinear dispersion may induce compac-
tons: solitary waves with a compact support [2], say, due
to vibrations in a genuinely anharmonic mass-spring chain
[3], particles dispersion in suspension [4], compression
along a chain of colliding hard balls [5] or migration of
magma [6]. These diverse phenomena have a common
mathematical thread: degeneracy of the leading order op-
erator causes a local loss of uniqueness on a singular
manifold which enables to tie the solution with its trivial

counterpart and thus form a robust compact entity in one,
[2,3], or N-dimensions [7].
We now let DðTÞ be constant and restore the radiation

but, as in the bremsstrahlung radiation where m ¼ 1=2,
assume that m< 1. The resulting sublinear radiation ef-
fectively arrests the immediate spread of initial disturbance
yielding a pattern that propagates with a finite speed. Once
again, the singularity due to sublinearity causes a local loss
of uniqueness and thus enables to tie the solution with the
trivial ground state.
We may induce the compactifying effect of the sublinear

force in a variety of otherwise completely different pro-
cesses like those described by, say, the Klein-Gordon, and
Schrödinger equations. Endowing their dynamics with
such a force yields solitary waves with a compact support.
One may thus say that irrespective of its origin, a mecha-
nism capable of inducing a local loss of uniqueness, can
induce compact patterns. In this respect, note a similar
effect due to a sublinear convection [8] and the very differ-
ent nature of the dissipative-radiative, Eq. (1), and the
dispersive processes to be presented next.
C-KG.—We start with a non-linear Klein-Gordon model

viewed as a continuum limit of an anharmonic mass-spring
chain embedded in a site potential PðuÞ

� utt þ ½�0ðuxÞ�x ¼ P0ðuÞ; (2)

where �0ð�Þ ¼ �þ ��3 and

PðuÞ ¼ 1

2ð1þ �Þ j1� u2j1þ� and 0 � �< 1: (3)

Let s ¼ x� �t; then two integrations reduce the problem
into a motion in a potential well Vðu;�Þ,

1

2
!2u2s � Vðu;�Þ ¼ 0; V � PðuÞP�ðuÞ; (4)

where !2 � 1� �2 and P� is due to anharmonicity

P�ðuÞ ¼ 2

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12�PðuÞ=!4

p : (5)

We start with the harmonic, � ¼ 0, case. Now
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!2�02 ¼ 1

1þ �
cos2��; where u ¼ sin�: (6)

thus Ið�; �Þ �
Z �

�	=2

d�

cos��
¼ � s

!
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p : (7)

If � ¼ 1, the topological soliton u ¼ � tanhðs=! ffiffiffi
2

p Þ has
an infinite support, but for �< 1, the integral converges

and j1� u2j � x1=1�� at the edges. The u ¼ �1 gap is
now spanned by a kink of a finite width

L ¼ !
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
Ið�;	=2Þ: (8)

Differently stated, a hetroclinical orbit connects the two,
�1, states in a ‘‘finite’’ time. Thus, the compact span of
kinks (hence the ‘‘C’’ in the title) is due to the subquadratic
nature of PðuÞ. For � ¼ � ¼ 0,

u¼
8><
>:
þ1 s=!�þ	=2
�sinðs=!Þ �	=2� s=!�	=2
�1 s=!��	=2

(9)

and P0ðuÞ ¼ �u sgnð1� u2Þ is now piecewise linear.
For � � 0, kinks profiles follow from Eq. (7), see (A) in

Fig. 1. Before we turn to describe interaction of kinks, we
stress that their nonanalyticity precludes the standard per-
turbation approach which anyway would not carry over to
the nonlinear stage. Equation (2) was integrated using a
fourth order scheme in space and time with a dissipative
smoothing, 
utxxxx, 
 ¼ Oð10�5Þ, of the short wave-
lengths.

In Figs. 2–4, we describe a head-on (>< ) and chasing
interactions (	) on a periodic domain of two � ¼ 0,
kinks, see Eq. (7). These and other interactions are snap-
shots of movies available in [9]. In general, motion of a
single kink is robust, but there is some momentum transfer
during kinks interaction. We found the � ¼ 2=3 and �2 �
�1 ¼ 0:25 chasing (	) interactions to be remarkably
clean, see Fig. 2, but this is more of an exception than a
rule. Typically, after repeated collisions, kinks may both
fuse and decompose and form one or few traveling quasi-
breathing formations of compact support pulsating spo-
radically, see Fig. 3. Occasionally, after a few head-on,
>< , encounters, two kinks may ‘‘synchronize’’ and form
a traveling pair which propagates in the same direction and

expands slowly with slightly wobbling fronts, see cases (d)
and (e) in Fig. 4.
We reiterate the crucial role of the subquadratic part of

the potential near its edges. Other features impact its shape
but not compactness. Thus, if in the sine-Gordon set up we
take PðuÞ ¼ �j cosu0 � cosuj but with 0< ju0j, the cusps
thus induced beget compact kinks. In a mechanical real-
ization, this would represent a chain of spring coupled
pendulums reflected before reaching the top. We note
that the � ¼ 0 case in (3) may also follow from a
Josephson chain of superconducting wires [10].
Anharmonicity.—Restoring � widens the kinks, see part

(A) of Fig. 1, which remain robust though their interaction
causes their demise. Note the mollifying effect of the
substrate force without which the nonlinear stress in
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FIG. 1. (H) Impact of � on kinks shape and width for � ¼ 0.
(A) Impact of anharmonicity parameter �=!4 for � ¼ 0. In all

cases, � ¼ 0:90 and ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p

 0:436.
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FIG. 3 (color online). A typical collision scenario. After 3
collisions, the � ¼ 0:90 and the stationary, � ¼ 0, kinks fuse
into a quasibreathing formation � ¼ 0.
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FIG. 2 (color online). A remarkably clean 	 interactions of
two, � ¼ 2=3, � ¼ 0:50, and � ¼ 0:25 kinks. Here and else-
where periodic boundaries were used.
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Eq. (2) turns unbounded [11]. A similar effect was also
found in the continuum limit of a strictly anharmonic mass-
spring chain [3]. The resulting compact breathers, see also
[12], help one to realize that their singularities are a trace of
a very narrow boundary layer on a lattice wherein the tails
decay in a doubly exponential rate. In the limit, these layers
shrink into a singularity that defines compactons edge.

C-NLS.—We now turn to the Schrödinger equation

iZt þ Zxx ¼ ð�jZj�� � �jZj2ÞZ; 0< � � 1: (10)

As in the C-KG case, the sublinearity induces a solitary
waves with a compact support, and hence the ‘‘C’’ in its
title. We seek a modulated traveling wave

Z ¼ AðsÞ exp½iðlsþ�tÞ� where s ¼ x� �t: (11)

From Eqs. (10) and (11), one deduces

A00 þ �2A� �A1�� ¼ ��A3; (12)

provided that we take

l ¼ �=2 and � ¼ �2=4� �2 (13)

and � is a modulation parameter. Naturally, we start with
the � ¼ 0 case. From Eq. (12),

Z ¼
�

2�

ð2��Þ�2

�
1=�

cos2=�
�
��

2
s

�
exp½iðlsþ�tÞ�; (14)

for jsj � 	=ð��Þ and vanishes elsewhere. The number of
modulations within the compact pulse is finite and in-
creases with �. Figure 5 displays jZj during an interaction
of two � ¼ 1=3 compactons. They are robust, and as �
decreases, their interaction becomes more, though not
entirely, elastic. The amplitude modulations seen during
compactons interaction describe a real effect and is not a
numerical artifact. This was confirmed quadrupling the
number of points of integration. Unlike the Klein-Gordon
case, no artificial dissipation was used to integrate Eq. (10).
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FIG. 4 (color online). Two, � ¼ 0, kinks before, (a), during,
(b), and after, (c), one collision. After the third collision, t� 79,
kinks start to ‘‘synchronize’’ into a traveling formation which,
see (d), (e), widens and, due to an artificial dissipation used in all
simulations of the C-KG, decelerates slowly [in (d) velocity
�0:37 and in (e) �0:30]. Since, see (d) and (e), the fronts
wobble a bit the motion is not a pure translation.
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FIG. 5 (color online). A head-on collision and reemergence of
two C-NLS, � ¼ 0, � ¼ 1=3, envelope compactons. The mod-
ulations throughout interaction are genuine and not a numerical
artifact. Note the sensitive dependence of Z on �, see Eq. (14).
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FIG. 6 (color online). Two, � ¼ 1, � ¼ 1=3, C-NLS compac-
tons during and after interaction. For � ¼ 0:1 compactons pat-
tern, except for the vicinity of edges, is similar to that of the pure
NLS soliton.

FIG. 7 (color online). Support of two compactons colliding at
60�. Note the sense of direction of each compacton. The inelastic
effect becomes noticeable only after 10 collisions. A collision at
120� yields a similar scenario but in a reverse direction. Here,
� ¼ 1, � ¼ 1=3, � ¼ 0, �a ¼ 0:80, and �b ¼ 0:75.
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For � � 0, A is given implicitly via

�

2
s ¼

Z A�=2

0

dYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�
2�� � Y2ð�2 þ �

2 Y
4=�Þ

q : (17)

To see impact on the standard NLS solitons, let �2 !
~�2 ¼ ��2, � ¼ 1=3, and �> 0. Now, � controls the
amplitude of the compacton which hardly depends on ~�.
For the core of the compacton to look NLS-like, for � ¼ 1
one takes � ¼ 0:1, see Fig. 6.

C-NLS on a plane.—Let Zxx ! r2Z in (10). Seeking

radial compactons moving in x-direction, we set AðsÞ !
AðR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ y2
p Þ in (11). This yields

1

R

d

dR
R
dA

dR
þ �2A� �A1�� ¼ ��A3: (16)

Note that since the choice of the x-axis is arbitrary, each
compacton may propagate in any direction. For � ¼ 0,

Eqs. (12) and (16) scale as A�ðRÞ ¼ ��ð2=�ÞA1ð�RÞ, tall
compactons are thus wide cf. Fig. 8. This should be con-
trasted with the NLS scaling A�ðRÞ ¼ �A1ð�RÞ. For ��
1 ¼ � ¼ 0, we obtain an explicit form

A ¼ �

�2

�
1� J0ð�RÞ

J0ð�R�Þ
�
; 0< R � R�; (20)

and vanishes elsewhere. R� ¼ r1=� and r1 is the first non-
zero root of J1. In Figs. 7 and 8, we describe collisions of
two and three � ¼ 0 radial C-NLS compactons obtained
solving (16) with compactons preserving their original
direction after a collision. For � ¼ 1=3, collisions are quite
clean, but the collisions inelasticity increases with �. When
� � 0, as in the pure NLS case, the planar compactons are
unstable. For movies of these and other patterns, see [9].

Discussion.—That the C-NLS, Eq. (10), may be viewed
as a complex extension of Eq. (1) attests to the power of
analogies. Clearly, the underlying physical processes and
the resulting patterns are quite different, and yet the sub-
linear force is equally effective in both cases in enforcing
compact patterns with sharp fronts. With respect to the
nonanalyticity of such fronts, or for that matter any front,
we note that our ease with analyticity is more a by-product
of our scientific upbringing than a reflection of reality. In
this respect, we recall the ‘‘nonanalytical’’ nature of Hertz
force between colliding spheres [5] or the Van der Waals

force at the edge of a liquid drop [8]. Though we have
indicated two possible applications for the C-KG type
equations, our goal was not to address a particular setup,
or to speculate about the possible use of the C-NLS com-
pactons in optics, but to use the two models, with the target
function being either scalar or a vector, as a launching
platform for the new concept and thereby challenge the
reader to find her or his own applications. Finally, we note a
subtle difference: while in the C-NLS, the sublinearity
provides an alternative to a missing characteristic speed;
in the C-KG, which has a natural light cone, it enables
translation of kinks of compact support.
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FIG. 8 (color online). Amplitudes of
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and � ¼ 7. They reemerge unchanged
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