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We derive nonlinear recursion relations for the leading chiral logarithms (LLs) in massless theories.

These relations not only provide a very efficient method of computation of LLs (e.g., the 33-loop

contribution is calculated in a dozen of seconds on a PC) but also equip us with a powerful tool for the

summation of the LLs. Our method is not limited to chiral perturbation theory only; it is pertinent to any

nonrenormalizable effective field theory such as, for instance, the theory of critical phenomena, low-

energy quantum gravity, etc.
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The very fact of the spontaneous breakdown of approxi-
mate chiral symmetry in strong interactions leads to the
possibility of the systematic expansion of hadronic ampli-
tudes and correlation functions at low energies. The ex-
pansion is organized in powers of external momenta and
the masses of pseudo Nambu-Goldstone bosons (pions).
We denote the corresponding expansion parameter generi-
cally as p2. An efficient method to perform the chiral
expansion is based on the technique of an effective chiral
Lagrangian [1]. The leading Oðp2Þ hadronic amplitudes
can be obtained from the tree diagrams of the famous
Weinberg Lagrangian [2]:

L 2 ¼ F2

4
tr½ð@�U@�U

yÞ þm2ðUþUyÞ�; (1)

where F is the pion decay constant in the chiral limit, and
m is the pion mass. The chiral corrections of the order
Oðp4 lnp2Þ can be obtained from the one-loop calculation
with the Weinberg Lagrangian (1) [1,3]. In order to com-
pute higher corrections, e.g. Oðp4Þ, Oðp6 lnp2Þ, etc., one
has to include terms with four and higher derivatives in the
effective chiral Lagrangian [4]. Note, however, that the
leading chiral logarithms (LLs), i.e., the correction of the
form Oðp2½p2 lnp2�nÞ can be obtained from the n-loop
diagrams generated by the Weinberg Lagrangian (1). The
conciseness and beauty of the leading logarithm approxi-
mation lies in the fact that LL corrections depend only on
one basic low-energy constant—F. In this approximation
one avoids rapid proliferation of the low-energy constant
with increasing of the chiral order. The calculation of LLs
is a Herculean task—it requires the computation of n-loop
diagrams in the nonrenormalizable field theory (1).
Presently, the LLs are computed to the two-loop accuracy
for the ��-scattering amplitude [5], to the five-loop accu-
racy for the correlator of scalar currents [6], and to the
three-loop accuracy for the generalized parton distributions
(GPDs) [7]. We note that for the case of the chiral correc-
tions to GPDs the summation of LLs is indispensable [7,8],

because the smallness of the chiral expansion parameter is
compensated by 1=xnBj.

In this Letter we present an efficient method to compute
LLs in the massless case. This method reduces the task of
LLs computation to a simple algebraic problem, and paves
a way towards the summation of LLs. We stress that our
method only works for observables in the chiral limit, i.e.,
when the masses in the effective theory vanish. Its general-
ization for the massive case will be presented elsewhere.
We discuss details of the method for the massless

OðN þ 1Þ �-model defined by the Lagrangian

L 2 ¼ 1
2½@��@��þ @��

a@��
a�; (2)

where the fields are constrained by the relation �2 þPN
a¼1 �

a�a ¼ F2. We consider the OðN þ 1Þ �-model

for the following reasons: (i) It is equivalent to the massless
two-flavour Weinberg Lagrangian (1) for N ¼ 3. (ii) It is a
free field theory forN ¼ 1, which can be used as a check of
our calculations. (iii) It can be solved in the large-N limit,
which provides a check of our calculations and allows us to
asses the accuracy of the 1=N expansion without tedious
calculations.
For simplicity, we consider LLs for the forward ��

scattering amplitude in the massless OðN þ 1Þ �-model
(2). The reader can easily apply our method to an observ-
able in a field theory of her or his choice. The forward
amplitude computed at Mandelstam t ¼ 0 has the form

TabcdðsÞ ¼ �ab�cdAðsÞ þ �cb�daBðsÞ þ �bd�acCðsÞ: (3)

The chiral expansion of the functions AðsÞ, BðsÞ, CðsÞ has
the following structure

AðsÞ ¼ ð4�Þ2S X1
n¼0

Xn
k¼0

AðkÞ
n SnLk;

BðsÞ ¼ ð4�Þ2S X1
n¼1

Xn
k¼0

BðkÞ
n SnLk; CðsÞ ¼ Að�sÞ;

(4)
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where we introduce a dimensionless invariant energy
S � s=ð4�FÞ2 and L denotes the chiral logarithms, L �
lnð�2=sÞ,� is the renormalization scale. The first Að0Þ

0 -term

in the expression for AðsÞ corresponds to the tree contri-
bution to the scattering amplitude in the OðN þ 1Þ
�-model (2). The other terms are higher chiral order
corrections. Our aim consists in the calculation of the LL

coefficients AðnÞ
n � An and BðnÞ

n � Bn appeared in Eq. (4).
Simple power counting [1] shows that the coefficient

AðkÞ
n originates from the k-loop diagram with vertices from

the chiral LagrangianLp with the number of derivatives of

the pion fields p � 2ðnþ 1� kÞ. We see that the n-th
order LL coefficient receives contribution from the
n-loop diagrams with vertices generated by the leading
Lagrangian (2). The UV divergencies in a n-loop diagram
are removed by the subtraction of lower-loop graphs with
insertion of the local counterterms corresponding to the
subdivergencies of the original n-loop diagram. See de-
tailed discussion of the structure of the subtractions in
Refs. [8,9]. The local counterterms relevant for our calcu-
lations renormalize the couplings the all-order Lagrangian,
which encodes the structure of counterterms:

L ¼ � 1

8

X1
n¼1

Xn
j¼0
even

gnjð�Þ
ð4�FÞ2n @

2nPj

�
@1@2
@2

�
: (5)

Here Pj are Legendre polynomials and a convenient nota-

tion for the operator monomials is introduced:

@2n
�
@1@2
@2

�
j � ð�a@

$
�1
. . . @

$
�j
�aÞ@2ðn�jÞð�b@

$
�1
. . . @

$
�j
�bÞ:
(6)

The coupling constants gnjð�Þ are enumerated by two

indices. The index n indicates the number of derivatives
of the pion fields (equal to 2n) in the corresponding coun-
terterm. We refer to the index n as ‘‘principal index.’’ The
second index j corresponds to the ‘‘exchanged spin’’ of the
counterterm. The tree level contribution of the vertices (5)
to the amplitude can be easily computed with the result

AtreeðsÞ ¼ � X1
n¼1

ð�SÞn Xn
j¼0
even

gnjð�Þ;

BtreeðsÞ ¼ �X1
n¼2
even

ðSÞngnnð�Þ ð2nÞ!
n!n!

:

(7)

The expansion coefficients AðkÞ
n and BðkÞ

n of the amplitude
(4) are functions of the infinite set of couplings gnjð�Þ,
denoted by g. These coefficients depend on the renormal-
ization scale � through � dependence of the couplings g.
The renormalized (physical) amplitude is given by the sum
of Eq. (4) and (7) and it must be independent of �. Thus,
imposing the requirement that �2 d

d�2 ðAðsÞ þ ActðsÞÞ ¼ 0

we obtain [10] the following set of equations:

Að1Þ
n ðgÞ þ ð�1Þn Xnþ1

j¼0
even

�nþ1jðgÞ ¼ 0

ĤAðkÞ
n ðgÞ þ ðkþ 1ÞAðkþ1Þ

n ðgÞ ¼ 0:

(8)

Here the �-functions are defined as �njðgÞ �
�2 d

d�2 gnjð�Þ. Also we have introduced the differential

operator Ĥ acting on the space of the coupling constants:

Ĥ � X1
n¼1

Xn
j¼0
even

�njðgÞ @

@gnj
: (9)

The set of Eqs. (8) has the following solution

AðkÞ
n ðgÞ ¼ ð�1Þnþk

k!
Ĥk

Xnþ1

j¼0
even

gnþ1j: (10)

The lowest constant Að0Þ
0 ¼ g10 ¼ 1 is fixed by the tree

level calculations with the Lagrangian (2). We see from the
solution (10) that, in order to obtain the LLs (constants

AðnÞ
n ), we have to apply the operator Ĥ n times to a linear

combination of the coupling constants gnj. This at first

glance formidable problems can be solved if one notes the

following crucial property of the operator Ĥ:

Ĥ ngmj ¼ 0; if m< n: (11)

Indeed, the loop diagrams contributing to the renormaliza-
tion of the constant gmj include vertices with constants gpl
with p <m only. It implies that the �mjðgÞ-functions
depend only on the subset of the low-energy constants
gpl with p <m. Hence, it is easy to see that the application

of the operator Ĥ to gmj leads to the lowering of the

principal indexm by one unit; i.e., we can write the general

form of the action of Ĥn on gnþ1j:

Ĥ ngnþ1j ¼ n!!njg
nþ1
10 ¼ n!!nj: (12)

The expression (12) simultaneously presents the definition
of quantities !nj (n is the number of loops and j � ðnþ
Modðn; 2ÞÞ), which determine the LL coefficients An �
AðnÞ
n [see Eq. (10) with k ¼ n].
Now our aim is to calculate !nj from Eq. (12). Because

of the property (11) only one-loop piece of �nj-functions,

which is quadratic in couplings gnj, contribute to Eq. (12).

This observation is in accordance with general RG analysis
of Ref. [9]. The general structure of the one-loop
�nj-function is the following:

�
1�loop
nj ðgÞ ¼ Xn�1

m¼1

Xm
i¼0
even

Xn�m

l¼0
even

Bðm;iÞðn�m;lÞ
j gmigðn�mÞl: (13)

Here Bðm;iÞðn�m;lÞ
j are numerical coefficients which can be

obtained from the calculation of one-loop diagrams shown
in Fig. 1. The result of calculations in the dimensional
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regularizations and minimal subtraction scheme gives the
following result:

Bðm;iÞðp;lÞ
j ¼ 1

2jþ 1

�
N

2
�ij�lj þ �ij�

li
p þ �lj�

il
m

�

þ ð1þ ð�1ÞjÞ Xmin½p;m�

k¼0

�ik
m�

lk
p�

kj
mþp

2kþ 1
; (14)

where constants �AB
n are computed as the following inte-

gral with Legendre polynomials:

�AB
n ¼ 2Bþ 1

2nþ1

Z 1

�1
dxPA

�
xþ 3

x� 1

�
PBðxÞðx� 1Þn: (15)

The ðnþ 1Þ � ðnþ 1Þ matrix �̂n with matrix elements
given by Eq. (15), posses many beautiful and intriguing

properties. For example, �̂2
n ¼ 1 and trð�̂nÞ ¼ sinð�nÞ,

which follow from the fact that the matrix �̂ represents
SLð2; RÞ transformations. The relation of this symmetry
group to the general structure of the renormalization pro-
cedure in a wide class of effective quantum field theories
will be discussed elsewhere.

Now substituting the one-loop �-function (13) into
Eq. (12) we obtain the following nonlinear recursive rela-
tions for desired coefficients !nj:

!nj ¼ 1

n

Xn�1

m¼0

Xmþ1

i¼0
even

Xn�m

l¼0
even

Bðmþ1;iÞðn�m;lÞ
j !mi!ðn�m�1Þl: (16)

The recursion (16) allows us to express the higher coef-
ficients !nj through that with lower principal indices,

starting with !00 ¼ 1. [We remind that n enumerates the
loop order and j � ðnþModðn; 2ÞÞ] The coefficients of

the �-functions Bðmþ1;iÞðn�m;lÞ
j are given by Eq. (14). The

LLs for the amplitudes AðsÞ, BðsÞ [(Cn ¼ ð�1Þnþ1An)] can
be computed in terms of !nj as follows:

An ¼
Xnþ1

j¼0
even

!nj; Bn ¼ ð2nþ 2Þ!
½ðnþ 1Þ!�2 !nnþ1: (17)

Although we demonstrated our method for the scattering
amplitude at zero momentum transfer it is easily general-
ized to the case with nonzero t. The result for the LLs for
the scattering amplitude Aðs; t; uÞ [see Eq. (3)] is the fol-
lowing [t ¼ � s

2 ð1� cos�Þ, sþ tþ u ¼ 0]:

Aðs; t; uÞ ¼ ð4�Þ2S X1
n¼0

Xn
j¼0
even

!njðSLÞnPjðcos�Þ;

where!nj satisfy the recursive relations (16), amplitudes B

and C are obtained by the crossing relation Bðs; t; uÞ ¼
Aðt; s; uÞ, Cðs; t; uÞ ¼ Aðu; t; sÞ.
The recursive relation (16) is the main result of the

present paper. It allows a very fast computation of LLs.
For example, the 33-loop chiral LL is computed in a dozen
of seconds on a PC [11]. The 6-loop results for LLs are
presented [12] in Table I for the amplitude AðsÞ and 7-loop
results in Table II for the amplitude BðsÞ.
Our results for LLs for N ¼ 3 agree with two-loop

calculations of �� amplitude [5] and with five-loop results
for the correlator of the scalar currents [6]. Additional
check of our method is provided by the case of N ¼ 1.
Indeed, for that value of N the Lagrangian (2) corresponds
to a free field theory; therefore, we should obtain nullifi-
cation of LLs. For N ¼ 1 the scattering amplitude is given
by the sum Aþ Bþ C, it is easy to see that all LLs are
cancelled in this case.
One can apply our method to the case of renormalizable

field theory in which the LLs are summed up by the 1-loop
RG equations. In a renormalizable theory the 1-loop
�-function (13) involves the charges gnj with the same

principal index n; therefore, in our recursive relations (16)

only coefficients Bðk;iÞðk;lÞ
j [the principal index k corre-

sponds to the chiral power of the vertex in renormalizable
Lagrangian] are present. For example, the OðN þ 1Þ sym-
metric �4-theory corresponds to k ¼ 0 or equivalently
p ¼ m ¼ 0 and i ¼ j ¼ l ¼ 0 in Eq. (14). Simple calcu-

(m,i) (p,l) + +

FIG. 1. One-loop diagrams contributing to the �-function’s
coefficients (14). Filled squares denote the counterterms (mi)
and (pl) introduced in Eq. (5).

TABLE I. LL coefficients for the amplitude AðsÞ.
# loops N ¼ 3 Arbitrary N

1 2
3

N
2 ð1� 5

3NÞ
2 25

18
N2

4 ð1� 37
18N þ 49

18N2Þ
3 577

540
N3

8 ð1� 287
90N þ 407

90N2 � 448
135N3Þ

4 1481
864

N4

16 ð1� 20 753
5400N þ 363 091

48 600N2 � 17 849
2430N3 þ 404

81N4Þ
5 28 943

19 440
N5

32 ð1� 12 533
2625N þ 765 584 3

708 750N2 � 131 966 6
91 125N3 þ 380 820 31

318 937 5N4 � 244 912 1
425 250N5Þ

6 337 444 93
158 760 00

N6

64 ð1� 363 217 1
661 500N þ 351 154 798 9

238 140 000N2 � 211 927 785 1
893 025 00N3 þ 614 187 878 3

238 140 000N4 � 624 998 186 3
357 210 000N5 þ 954 322 601

119 070 000N6Þ
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lation gives Bð0;0Þð0;0Þ
0 ¼ ðN þ 8Þ=2, which is nothing else

as the coefficient of the 1-loop �-function in the�4 theory.
For that case the solution of Eq. (16) is !nj ¼ ððN þ
8Þ=2Þn�j0, that coincides with the solution for LLs [13]

in the �4-theory which alternatively can be obtained by
solving the 1-loop RG equations.

The nonlinear recursion relation (16) for LLs is valuable
not only because it renders a breakthrough in the calcula-
tions of LLs, it also allows general theoretical studies of
LLs anatomy in wide class of effective theories. As an
example, let us consider the behavior of LLs in the large-N
limit ofOðN þ 1Þ �-model. In this limit we can neglect all
terms in the expression (14) but the first one. Then, the
recursion relation (16) for large N LLs is simplified con-
siderably:

!LN
nj ¼ 1

2n

Xn�1

m¼1

N

2jþ 1
!LN

mj!
LN
ðn�m�1Þj: (18)

The solution of this recursion is obvious:

!LN
nj ¼

�
N

2

�
n
�j0: (19)

This solution is in agreement with the direct large-N
calculations in the OðN þ 1Þ �-model, see, e.g., [14]. In
order to compute the 1=N corrections to the leading result
(19) we substitute the LLs in the form

!nj ¼
�
N

2

�
n
�
�j0 þ

cð1Þnj

N
þ . . .

�
(20)

into the recursion relation (16) and obtain the linear equa-

tion for the coefficients cð1Þnk . This equation has a solution in

terms of the Lerch function. The corresponding expression
is rather long, instead we give the result for the LL coef-
ficients An for the leading and subleading 1=N orders in the
case of large number of loops n � 1. The leading 1=N
asymptotic of the amplitude B we compute without any
assumptions about n. The result is

An ¼
�
N

2

�
n
�
1� ð�

2

3
� 8ð1� ln2ÞÞ n

N
þ . . .

�
;

Bn ¼
�
N

2

�
n�1 2

2þ n

�
1þO

�
1

N

��
:

It is a remarkable result. It shows that the 1=N expansion
for OðN þ 1Þ �-model fails in the chiral order n� N and
the expansion requires reordering.
In summary, we have developed the method of nonlinear

recursion relations (16) which allows a calculation the
leading chiral logarithms to essentially unlimited order.
Furthermore, this method presents a puissant tool for study
of general structure of infrared logarithms. It can be ap-
plied to any physics problem described by a nonrenorma-
lizable effective low-energy Lagrangian, e.g., theory of
critical phenomena, low-energy quantum gravity, theory
of magnetics, etc.
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TABLE II. LL coefficients for the amplitude BðsÞ.
# loops N ¼ 3 Arbitrary N

1 2
3

2
3

3 181
270

N2

10 � 203N
1080 þ 361

1080

5 332 074 7
510 300 0

N4

56 � 8609N3

126 000 þ 892 579N2

567 000 0 � 173 670 61N
102 060 000 þ 291 493 1

204 120 00

7 243 374 755 934 9
378 071 064 000 0

N6

288 � 209 635N5

106 686 72 þ 266 068 577 671N4

448 084 224 000 0 � 161 665 040 906 3N3

151 228 425 600 00 þ 163 934 003 072 87N2

120 982 740 480 000 � 179 751 202 247N
172 832 486 400 0 þ 341 420 872 829 3

604 913 702 400 00
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