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We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show

that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler

equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic

incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the

implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of

the equations and the dynamics governed by them.
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Turbulence is a central unsolved problem of classical
physics. The main obstacle to an advancement in the area is
the insufficient understanding of the equations governing
the nonlinear dynamics of the fluids. In a most basic
situation these are the incompressible Navier-Stokes (NS)
equations (see, e.g., [1])

@tvþ ðv � rÞv ¼ �rPþ �r2v; r � v ¼ 0; (1)

where vðx; tÞ is the velocity field, � is the (kinematic)
viscosity and P is the fluid pressure divided by the density,
r2P ¼ �rirjvivj. Among the central questions posed by

the NS equations is the existence of singularities in the
solutions and the statistics of the solutions in the limit of
small �, both with and without forcing. Much light on these
questions could come from understanding the incompress-
ible Euler equation obtained by setting � ¼ 0 in Eq. (1).
However, the Euler equation is also ill-understood and
questions such as the existence of singularities are far
from being settled. In this Letter we propose a new ap-
proach to the equations, which we expect to be useful in
tackling this old-standing problem. We suggest that rela-
tivistic conformal field theories (CFTs) provide a funda-
mental microscopic viewpoint of the equations and the
dynamics governed by them.

A complete (compressible) hydrodynamics is described
by five fields: the three-velocity components, the tempera-
ture, and the particle density [1–3]. In a CFT there is no
locally conserved charge corresponding to the particle den-
sity [2,4]. As a result, conformal hydrodynamics is de-
scribed by only four fields: the three-velocity components
and the temperature. This implies that one cannot have a
microscopic CFT structure for the complete hydrodynam-
ics. However, the incompressible Euler and NS equations
contain only three fields: the three-velocity components,
and may have an underlying microscopic CFT structure.

The hydrodynamics of relativistic conformal field theo-
ries is intrinsically relativistic as is the microscopic dy-
namics. In particular, the nonrelativistic limit of a
relativistic conformal hydrodynamics may not be well
defined. We will show that the limit of nonrelativistic

macroscopic motions of a CFT hydrodynamics is definable
and leads to the nonrelativistic incompressible Euler and
NS equations for ideal and dissipative hydrodynamics of
the CFT, respectively. Thus, a relativistic conformal field
theory contains the incompressible Euler and NS equations
inside it. In view of that, we propose that relativistic
conformal field theories can provide a fundamental micro-
scopic viewpoint of the Euler and NS equations and the
dynamics governed by them.
Thus, one can study the Euler and NS equations, their

symmetries and their dynamics using tools of relativistic
CFTs. For instance, the anomalous scaling exponents of
turbulence [1,5] should be encoded in the relativistic CFTs
dynamics. Recently, some features of 2þ 1 dimensional
incompressible turbulence were shown numerically to dis-
play conformal invariance [6,7]. The theoretical reasons
for this finding are not clear yet. Our results may help to
shed light on this discovery.
The hydrodynamics of relativistic conformal field theo-

ries has attracted much attention recently in view of the
AdS/CFT correspondence between gravitational theories
on asymptotically anti–de Sitter (AdS) spaces and CFTs
[8]. Thus, for instance, a relation between black brane
dynamics in five-dimensional AdS space and fluid dynam-
ics on the four-dimensional boundary has been studied in
[9,10]. Our results suggest that the incompressible Euler
and NS equations have a dual gravitational description.
Having a gravity description can provide an insight to basic
issues in turbulence such as the existence of singularities in
the solutions.
Consider the hydrodynamical description of a relativis-

tic CFT at finite temperature. Hydrodynamics applies
under the condition that the correlation length of the fluid
lcor is much smaller than the characteristic scale L of
variations of the macroscopic fields (such as moments of
the stress-energy tensor). In order to characterize the situ-
ation one introduces the dimensionless Knudsen number
Kn � lcor=L. Since the only dimensionfull parameter is the
characteristic temperature of the fluid T, one has, by di-
mensional analysis,
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lcor ¼ ð@c=kBTÞGð�Þ; (2)

where � denotes all the dimensionless parameters of the
CFT. For example, one hasG� 1 forN ¼ 4 SUðNÞ super
Yang-Mills (SYM) theory at large N and large ’t Hooft
coupling, and more generally when a gravitational AdS
dual description of a CFT is valid.

The stress-energy tensor of the CFT obeys

@�T
�� ¼ 0; T

�
� ¼ 0: (3)

The equations of relativistic hydrodynamics are deter-
mined by the constitutive relation expressing T�� in terms
of the temperature TðxÞ and the four-velocity field u�ðxÞ
satisfying u�u

� ¼ �1. Here u� and T determine the local

thermal equilibrium distribution of the fluid. The constitu-
tive relation has the form of a series in the small parameter
Kn � 1,

T��ðxÞ ¼ X1

l¼0

T
��
l ðxÞ; T

��
l � ðKnÞl; (4)

where T��
l ðxÞ is determined by the local values of u� and T

and their derivatives of a finite order. The smallness of T��
l

arises because it involves either the lth derivative of u� or
T or because it contains the corresponding power of a
lower-order derivative. Keeping only the first term in the
series gives ideal hydrodynamics within which the entropy
is conserved and the entropy density per unit volume �
obeys conservation law @�ð�u�Þ ¼ 0. Dissipative hydro-

dynamics arises when one keeps the first two terms in the
series.

The ideal hydrodynamics approximation for T�� does
not contain the spatial derivatives of the fields and would
be the same for an infinite fluid with constant u� and T.
This allows to find the corresponding form of T�� easily
[2]. First, we notice that in the rest frame of the fluid the
stress-energy tensor has the form (Pascal’s law)

T�� ¼ diag½e; p; p; p�; (5)

where e is the energy density and p is the pressure. The
above equation and T�

� ¼ 0 produce the equation of state
p ¼ e=3. In particular, we see that in a CFT the speed of

sound c2s ¼ c2ð@p=@eÞs is a constant, cs ¼ c=
ffiffiffi
3

p
. The

covariant expression for T�� reads

T�� ¼ p��� þ ðeþ pÞu�u�; (6)

and it gives the correct expression for T�� in the rest frame.

For a CFTwe have, by dimensional analysis, p ¼ aT4 and
e ¼ 3aT4, where T is the fluid temperature and a is a
constant, so that

T�� ¼ aT4½��� þ 4u�u��: (7)

Note that a enters as a multiplicative constant in the above
expression and disappears from the equations of motion
@�T

�� ¼ 0,

@�T
4½��� þ 4u�u�� ¼ 0: (8)

The resulting equation is completely independent of the

microscopic structure of the theory—it is the same for all
conformal field theories. It can be rewritten as [11]

D� ¼ � 1

3
@�u

�; Du� ¼ �@��þ u�@�u
�

3
; (9)

where � � lnT and D ¼ u�@�. The first equation follows
from the second by multiplication with u� and the use of

u�u� ¼ �1. This equation is equivalent to the entropy

conservation @�ð�u�Þ ¼ 0 where � ¼ 4aT3.

Consider now the nonrelativistic slow motions limit
v � c where v is the three-velocity of the fluid. The latter

is defined by u� ¼ ð�; �v=cÞ and � ¼ ½1� v2=c2��1=2.
Introducing the substantial derivative D ¼ @t þ v � r, see
[2], we have

D ¼ �D

c
; @�u

� ¼D�

c
þ�r�v

c
; D ln�¼ vDv

c2�v2
:

Using the above identities one may rewrite Eqs. (9) as

@�

@t
þ 2c2

3c2 � v2
ðv � rÞ� ¼ � c2

3c2 � v2
r � v; (10)

@vi

@t
þ ðv � rÞvi ¼ �ðc2 � v2Þ

�
	ij �

2vivj

3c2 � v2

�
rj�

þ ðc2 � v2Þviðr � vÞ
3c2 � v2

: (11)

Here and below latin indices will stand for spatial compo-
nents. The system in the above form allows us to study the
limit v � c, conveniently. In the lowest order in v=c we
find the equations of linearized hydrodynamics,

@t� ¼ �r � v=3; @tv ¼ �c2r�: (12)

The equations conserve the transversal component of ve-
locity (just like ordinary linearized hydrodynamics equa-
tions do), while the rest of the variables propagate as sound

waves with the speed of sound cs ¼ c=
ffiffiffi
3

p
, e.g.,

@2t � ¼ c2sr2�: (13)

Consider the leading order dynamics that follows from
Eqs. (10) and (11) in the limit c ! 1. Note that linearized
Eqs. (12) have a well-defined limit c ! 1 when we in-
troduce

P ¼ c2½�þ C�; C ¼ const; (14)

and keep P finite in the limit. This is the case in general.
Equations (10) and (11) in terms of P take the form

1

c2

�
@P

@t
þ 2c2

3c2 � v2
ðv � rÞP

�
¼ � c2

3c2 � v2
r � v; (15)

@vi

@t
þ ðv � rÞvi ¼ �

�
1� v2

c2

��
	ij �

2vivj

3c2 � v2

�
rjP

þ ðc2 � v2Þviðr � vÞ
3c2 � v2

: (16)

In the limit c ! 1 we obtain
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@v

@t
þ ðv � rÞv ¼ �rP; r � v ¼ 0; (17)

that is the incompressible Euler equation. The constant in
the definition of P remains undetermined as it does not
influence the dynamics of v at all. The assumption that P is
finite at c ! 1 is consistent with the relation r2P ¼
�rjrivivj following from Eq. (17).

It is instructive to consider the above reduction in terms
of the stress-energy tensor. Introducing a new tensor ~T��

by ~T00 ¼ T00, ~T0i ¼ cT0i and ~Tij ¼ c2Tij, we may rewrite
@�T

�� ¼ 0 as

@ ~T�0

@t
þ @ ~T�i

@xi
¼ 0: (18)

We omit the multiplicative constant a and get

~T 00 � 3T4
0 þOðv2=c2Þ; ~T0i ¼ 4T4

0vi; (19)

~T ij ¼ c2T4
0	ij þ 4T4

0½P	ij þ vivj þOðv2=c2Þ�; (20)

where

T ¼ T0½1þ P=c2 þ oð1=cÞ�; T0 � exp½�C�: (21)

It is easy to see that Eqs. (18)–(20) reproduce the incom-
pressible Euler equation. Note that the temperature and
thus the pressure are almost homogeneous in the limit. The
physical reason for this is that here the limit v=c ! 0 also
corresponds to the limit of small Mach number. The Mach
number is defined as the ratio of the characteristic velocity
of the fluid to the speed of sound cs [2]. In this limit the
sound propagation is instantaneous, which leads to instan-
taneous homogenization of the pressure. In the case of a
CFT, where there is only one independent thermodynamic
variable, such homogenization implies incompressibility
as in many other cases of small Mach number [2]. Thus, the
ideal hydrodynamics of a general CFT gives the incom-
pressible Euler equation in the limit of nonrelativistic
velocities.

Consider next the dissipative hydrodynamics obtained
by keeping l ¼ 1 term in the series in Eq. (4). In the
Landau frame [2,11] the stress-energy tensor reads

T�� ¼ aT4½��� þ 4u�u�� � c����; (22)

where ��� obeys ���u
� ¼ 0 and is given by

��� ¼ ð@�u� þ @�u� þ u�u

@
u� þ u�u


@
u�Þ
� 2

3@�u
�½��� þ u�u��: (23)

Note that dissipative hydrodynamics of a CFT is deter-
mined by only one kinetic coefficient—the shear viscosity
�. The bulk viscosity � vanishes for the CFT, while the
absence of the particle number conservation and the use of
the Landau frame allow to avoid the use of heat conduc-
tivity (which is not an independent coefficient here [4]).
The dissipative hydrodynamics of different CFTs differs by
the value of the dimensionless function Fð�Þ in

� ¼ aFð�ÞT3; (24)

(here and below we put @ ¼ kB ¼ 1 until stated otherwise).
For example, for strongly coupled CFTs described by an
AdS gravity dual, � can be determined from the universal
ratio �=� ¼ 1=4� [12], giving F ¼ 1=�.
Dropping a multiplicative constant in T�� we have

T�� ¼ T4½��� þ 4u�u�� � cFð�ÞT3���: (25)

The tensor ��� contains both space and time derivatives,

and as a result @�T
�� ¼ 0 contains second derivatives both

in space and time. Thus, it does not lead to an equation that
is first order in time. Note, however, that the time-
derivatives in ��� can be substituted by their ideal hydro-

dynamics expressions. Indeed, within hydrodynamics the
time derivatives of fields are given by a series in the spatial
gradients of the fields, while second derivative terms in
��� would correspond to a higher order of expansion than

the considered one, cf. [13]. The use of Eqs. (9) allows to
rewrite Eq. (23) as

��� ¼ @�u� þ @�u� � u�@��� u�@��

� 2���@�u
�=3:

The generalization of Eqs. (9) which includes the viscous
contribution to the stress-energy tensor is

D� ¼ �@�u
�

3
þ cFð�ÞI

12T
; I � ���@�u�;

Du� ¼ �@��þ u�@�u
�

3
� cFIu�

3T
þ cFA�

4T
;

(26)

A� � 3���@��þ @��
�� ¼ @�½���T3�=T3: (27)

Using Eqs. (9) one can write

I ¼ ð@�u�Þ½@�u� þ @�u�� þ ð@��Þð@��Þ � 5ð@�u�Þ2=9:
Passing from u� to v as in Eqs. (10) and (11) one finds

@�

@t
þ 2c2

3c2 � v2
ðv � rÞ� ¼ � c2

3c2 � v2
r � v

þ c2Fð�Þðc2 þ v2ÞI
4T�ð3c2 � v2Þ

� cFð�Þðc2 � v2Þðv �AÞ
4Tð3c2 � v2Þ ;

(28)

@vi

@t
þðv �rÞvi¼ðc2�v2Þviðr�vÞ

3c2�v2
�ðc2�v2Þvic

2FI

ð3c2�v2ÞT�
�ðc2�v2Þ

�
	ij�

2vivj

3c2�v2

�

�
�
rj��

cFð�ÞAj

4T

�
: (29)

To rewrite Ai in terms of v and � one can write Ai as
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Ai ¼ 2@ið@�u�Þ=3þ 4ð@iu�Þð@��Þ þ @�@
�ui � ui@�@

��

þ 2ð@�uiÞð@��Þ � 3uið@��Þð@��Þ � 2ð@�u�Þð@i�Þ:
(30)

Further, the terms in the above sum can be fixed using
Eqs. (9). We are interested in the leading order dynamics in
the limit c ! 1. In this limit, remembering that the
time-derivatives of v are finite, and using the definition
of P (14), where derivatives of P are finite (see below), one
finds that Ai is of order 1=c. The only terms in the sum in
Eq. (30) which are of this order are

@ið@�u�Þ � @ir � v=c; @�@
�ui � r2vi=c; (31)

while the rest of the terms are of higher order. We find

Ai � 2@ir � v=3cþr2vi=c: (32)

Analogously, after a straightforward but lengthy calcula-
tion one finds

I � ½@jvi þ @ivj�@ivj=c
2 � 2½r � v�2=3c2: (33)

Thus, in the leading order in 1=c, Eq. (28) becomes

r � v ¼ ðFð�Þ=4TÞ½ð@jvi þ @ivjÞ@ivj � 2½r � v�2=3
� vr2v� 2ðv � rÞr � v=3�: (34)

Restoring the dimensions, one finds that the ratio of the
right-hand side to the left-hand side is governed by dimen-
sionless parameter

S � @Fð�ÞV
LkBT

� Kn
V

c

Fð�Þ
Gð�Þ : (35)

Here V is the characteristic value of the velocity, L is the
characteristic scale and T is the characteristic temperature.
Generally � obeys the estimate �� ðe=c2Þlcorcs, see [14],
implying Fð�Þ �Gð�Þ. Then S� KnðV=cÞ � 1. In spe-
cial situations where F=G is not of order one (cf. [14]), at
sufficiently small V=c and Kn we still have S � 1 and
Eq. (34) reduces to just

r � v ¼ 0: (36)

Using the above one finds for Eq. (29)

@v

@t
þ ðv � rÞv ¼ �rPþ �r2v; � � @c2Fð�Þ

4kBT0

;

where the constant T0 is still determined by Eq. (21). The
last term in the first line of Eq. (29) is smaller than �r2v by
a factor V2=c2 � 1 and can be omitted.

Thus, in the limit v=c ! 0 dissipative hydrodynamics of
the CFT produces the incompressible NS equation with the
effective viscosity determined by the almost homogeneous
background of the temperature (corrections to which are
determined by nonrelativistic ‘‘pressure’’ P). The under-
lying physics is the same as for the ideal hydrodynamics. In

terms of the stress-energy tensor, Eq. (19) is unchanged
while Eqs. (20) is modified to

~Tij ¼ c2T4
0	ij þ 4T4

0½P	ij þ vivj þOðv2=c2Þ�

� �c2

a

�
@jvi þ @ivj � 2

3
	ijr � v

�
: (37)

The corrections however are now governed not only by
v=c but also by S—the expansion is now two-parametric.
The viscosity � obeys �� ðF=GÞlcorcs. For F� 1, at room
temperature it is of order 108 cm2=s which is about 10
orders of magnitude larger than the one of air. In ordinary
circumstances such fluid would behave almost as a solid.
On the other hand, � falls linearly with temperature and for
very high temperatures, e.g., of strongly coupled thermal
plasma, a fluidlike behavior will be displayed. The relevant
dimensionless parameter that characterizes the viscosity is
the Reynolds number Re � VL=� and it can take an
arbitrary value in accord with the external conditions.
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