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We show that the Cohen-Glashow very special relativity (VSR) theory [A.G. Cohen and S. L. Glashow,

Phys. Rev. Lett. 97, 021601 (2006)] can be realized as the part of the Poincaré symmetry preserved on a

noncommutative Moyal plane with lightlike noncommutativity. Moreover, we show that the three

subgroups relevant to VSR can also be realized in the noncommutative space-time setting. For all of

these three cases, the noncommutativity parameter ��� should be lightlike (������ ¼ 0). We discuss

some physical implications of this realization of the Cohen-Glashow VSR.
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The special theory of relativity postulates the Poincaré
group as the symmetry of Nature. It is believed, however,
that at very high energies the usual description of space-
time in terms of a smooth manifold would break down and,
together with it, the Lorentz invariance of physical theo-
ries. Various possible departures from Lorentz invariance
at high energies have been studied, both theoretically and
experimentally (see [1–3], and references therein). The
problem addressed in Ref. [1] is whether Lorentz-invariant
theories, like the standard model, could emerge as effective
theories from a more fundamental scheme, perhaps opera-
tive at the Planck scale, which is invariant under very
special relativity groups but not invariant under the full
Poincaré group.

Very special relativity (VSR) has been introduced in
Ref. [1] as symmetry under certain subgroups of the
Poincaré group, which contain space-time translations and
at least a 2-parametric proper subgroup of the Lorentz
transformations, isomorphic to that generated by Kx þ Jy
and Ky � Jx, where J andK are the generators of rotations

and boosts, respectively. These subgroups of the Lorentz
group share the remarkable property that, when supple-
mented with T, P, or CP, they will be enlarged to the full
Lorentz group. This can be taken as the definition of VSR.

The requirement of energy-momentum conservation
should be preserved in VSR; consequently, in all of its
realizations the translational symmetry should be con-
tained. Besides generators of translations P�, the minimal

version of VSR includes the Abelian subgroup of the
Lorentz group Tð2Þ, generated by T1 ¼ Kx þ Jy and T2 ¼
Ky � Jx. The group Tð2Þ can be identified with the trans-

lation group on a two-dimensional plane. The other larger
versions of VSR are obtained by adding one or two Lorentz
generators to Tð2Þ, which have a geometric realization on
the two-dimensional plane: (i) Eð2Þ, the group of two-
dimensional Euclidean motion, generated by T1, T2, and
Jz, with the structure:

½T1;T2� ¼ 0; ½Jz;T1� ¼�iT2; ½Jz;T2� ¼ iT1; (1)

(ii) HOMð2Þ, the group of orientation-preserving similar-

ity transformations, or homotheties, generated by T1, T2,
and Kz, with the structure

½T1;T2� ¼ 0; ½T1;Kz� ¼ iT1; ½T2;Kz� ¼ iT2; (2)

(iii) SIMð2Þ, the group isomorphic to the four-parametric
similitude group, generated by T1, T2, Jz, and Kz.
When attempting to construct a concrete realization of

the VSR symmetry as a fundamental scheme within a
‘‘master theory,’’ most certainly nonlocal [1] and which
would lead in the low-energy limit to an effective Poincaré-
invariant theory, one runs into the problem of the repre-
sentation content of the master theory. The Lorentz sub-
groups involved in VSR have only one-dimensional
representations, unlike the Lorentz group. The representa-
tions of Tð2Þ, Eð2Þ, HOMð2Þ, and SIMð2Þ are automati-
cally representations of the Lorentz group, but the
reciprocal is not valid. As a result, if we construct the
master theory based on the one-dimensional representa-
tions of the VSR subgroups, when requiring also P, T, or
CP invariance, although the theory becomes invariant
under the whole Lorentz group, the one-dimensional rep-
resentations will not change. As a result, the effective
theory would be doomed by its very poor representation
content. Another possibility is to use in the realization of
VSR the representations of the full Lorentz group but add a
Lorentz-violating factor, such that the symmetry of the
Lagrangian is reduced to one of the VSR subgroups of
the Lorentz group. However, such an approach can hardly
provide a fundamental theory, given that its symmetry does
not match its representation content.
This contradiction can be resolved if we abandon the

reasoning in terms of Lie groups or algebras and extend the
discussion to (deformed) Hopf algebras. In the framework
of Hopf algebras, there exist deformations which leave the
structure of the algebra (commutation relation of the gen-
erators) untouched but affect other properties of the Hopf
algebra, i.e., the coalgebra structure [4]. Since the commu-
tation relations of generators are not deformed, it follows
automatically that the Casimir operators are the same and
the representation content of the deformed Hopf algebra is

PRL 101, 261601 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2008

0031-9007=08=101(26)=261601(4) 261601-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.261601


identical to the one of the undeformed algebra. On the
other hand, the deformation of the coalgebra structure
reduces the symmetry of the scheme. Such deformations
are the twists introduced in Ref. [5], which turned out to
provide a powerful concept, facilitating the systematic
approach to deformation quantization [4].

Noncommutative quantum field theories (NC QFTs) are
field theories constructed on space-times whose coordi-
nates satisfy the commutation relations

½x�; x�� ¼ i���; (3)

where � can be a function of coordinates (with the condi-
tion that it satisfies the Jacobi identity). The commutation
relations (3) usually spoil the Lorentz invariance (and
sometimes also the translational invariance) of the NC
QFTs; however, these theories remain invariant under the
subgroup of the Poincaré group which preserves the co-
variance of (3) (see [6] for the case of constant �).

The essential element for our discussion is that NC
QFTs possess symmetry under various twisted Poincaré
algebras, depending on the structure of � [7,8] (see also
[9]). The advantage of using the twisted Poincaré language
for constructing physical theories is that, in spite of the lack
of full Lorentz symmetry, the fields carry representations
of the full Lorentz group [10,11] and the spin-statistics
relation is still valid; the deformation then appears in the
product of the fields (interaction terms).

Although we reviewed mainly the technical merits of the
NC QFTas a candidate for realizing VSR, we should recall
the main motivation for introducing the NC space-time,
based on the interplay of quantum theory and classical
gravity [12], as well as the emergence of NC QFTs as
low-energy effective theories from string theory in Kalb-
Ramond background field [13,14].

In this Letter, we show that the NC spaces with lightlike
noncommutativity [15] offer a natural setting which real-
izes VSR, hence providing us with the well-studied theo-
retical setting of NCQFT, with twisted Poincaré symmetry,
as a physical framework for VSR.

Space-time noncommutativity and VSR.—To start with,
we focus on the NC spaces defined through (3). Since ���

is an antisymmetric two tensor, NC spaces can be classified
according to the two Lorentz invariants

�4 � ����
��; L4 � �����������: (4)

�4 is related to the noncommutativity scale, the scale
where noncommutativity effects will become important,
while L4 is related to the smallest (space-time) volume that
we can measure in a noncommutative theory.

Depending on whether L4 and �4 are positive, zero, or
negative, one can recognize nine cases. The L4 � 0 cases
cannot be obtained as a decoupling (low-energy) limit of
open string theory, do not lead to a unitary NC QFT theory
[15], and hence are not usually considered. (However, the
�4 ¼ 0, L4 � 0 case is the famous Doplicher-
Fredenhagen-Roberts [12] noncommutative space.)

For L4 ¼ 0, depending on the value of �4, there are
three types of noncommutative spaces: (i) �4 > 0—space-
like (space-space) noncommutativity; (ii) �4 < 0—time-
like (time-space) noncommutativity; (iii) �4 ¼ 0—
lightlike noncommutativity. When � is constant, for
case (ii), it has been shown that there is no well-defined
decoupled field theory limit for the corresponding open
string theory [15]. In the field theory language, this shows
itself as instability of the vacuum state and nonunitarity of
the field theory on timelike NC space [16]. For the space-
like case (i) and lightlike case (iii), noncommutative field
theory limits are well-defined and the corresponding field
theories are perturbatively unitary.
Depending on the structure of the right-hand side of (3),

there exist three types of NC deformations of the space-
time which can be realized through twists of the Poincaré
algebra [7–9]: (i) Constant ���—the Heisenberg-type
commutation relations, defining the Moyal space:

½x�; x�� ¼ i���; (5)

where ��� is a constant antisymmetric matrix. (ii) Linear
���, with the Lie-algebra type commutators:

½x�; x�� ¼ iC��
� x�; (6)

describing an (associative but) noncommutative space if
C
��
� are structure constants of an associative Lie algebra.

(iii) Quadratic noncommutativity, the quantum group type
of commutation relations:

½x�; x�� ¼ 1

q
R��
��x�x�: (7)

All of the above-mentioned cases of noncommutative
space-time have originally been studied in Ref. [17] with
respect to the formulation of NC QFTs on those spaces.
Only in case (i) is the translational invariance preserved in
all of the directions of space-time. Since the translation
symmetry is one of the requirements of the Cohen-
Glashow VSR theories [1], only the Moyal NC space-
time is relevant to VSR, and therefore here we mainly
focus on the Moyal case. We shall briefly discuss the linear
and quadratic ��� cases, since in special conditions, all of
these types of noncommutativity can be put in a relation to
certain Lorentz subgroups relevant to VSR.
Tð2Þ symmetry as lightlike noncommutativity.—

Motivated by the above arguments, we set about finding
a configuration of the antisymmetric matrix ��� which
would be invariant under the Tð2Þ subgroup of the
Lorentz group—the only of the VSR subgroups which
admits invariant tensors, as also noted in [1]. If we denote
the elements of the Tð2Þ subgroup by

�1 ¼ ei�T1 and �2 ¼ ei�T2 ; (8)

the invariance condition for the tensor ��� is written as

�
�
i��

�
i��

�� ¼ ���; i ¼ 1; 2; (9)

and infinitesimally
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T�
i��

�� þ T�
i��

�� ¼ 0; i ¼ 1; 2: (10)

The nonvanishing elements of the matrix realizations of the
generators T1 and T2 are (see, e.g., the monograph [18]):
ðT1Þ01 ¼ ðT1Þ10 ¼ ðT1Þ13 ¼ �ðT1Þ31 ¼ i and ðT2Þ02 ¼ ðT2Þ20 ¼
ðT2Þ23 ¼ �ðT2Þ32 ¼ i.

Plugging these values into (10), we find the solution

�0i ¼ ��3i; i ¼ 1; 2; (11)

all of the other components of the antisymmetric matrix
��� being zero. Note that to obtain the above result we did
not assume any special form for the x dependence of ���,
and hence this holds for either of the three constant, linear,
and quadratic cases.

With the above ��� we see that �4 ¼ L4 ¼ 0; that is, a
lightlike ��� is invariant under Tð2Þ.

One may use the light-cone frame coordinates

x� ¼ ðt� x3Þ=2; xi; i ¼ 1; 2: (12)

In the above coordinate system, the only nonzero compo-
nents of the lightlike noncommutativity (11) are ��i ¼
�0i ¼ ��3i (and �þ� ¼ �þi ¼ �ij ¼ 0). In the light-
cone coordinates (or light-cone gauge), one can take xþ
to be the light-cone time and x� the light-cone space
direction. In this frame, (light-cone) time commutes with
the space coordinates. In the light-cone (þ;�; 1; 2) basis,

��� ¼
0 0 0 0
0 0 � �0
0 �� 0 0
0 ��0 0 0

0
BBB@

1
CCCA: (13)

Eð2Þ and SIMð2Þ invariant NC spaces.—A constant ��i

breaks rotational invariance in the ðx1; x2Þ plane, and hence
larger VSR subgroups are not possible in the Moyal NC
space case. The Eð2Þ invariant case can be realized in the
linear, Lie-algebra-type noncommutative spaces, and
SIMð2Þ can be realized by quadratic noncommutativity.

The Eð2Þ case.—Recalling that Jz is the generator of
rotations in the ðx1; x2Þ plane while keeping x� invariant,
and that xi are invariant under Kz, which acts as scaling on
x� and xþ, the Eð2Þ case is realized when ��i is propor-
tional to xi and is independent of x�. Noting that the only
invariant tensors under Jz are 	ij and �ij, then �

�i has to be

proportional to the product of either of these invariant
tensors with the only available vector on the ðx1; x2Þ plane:

½x�; xi� ¼ i‘�ijxj or (14a)

½x�; xi� ¼ i‘xi: (14b)

With the above choices, the translational symmetry along
x� is preserved, while along xi it is clearly lost.

Instead of xi coordinates, we may work with the cylin-
drical coordinates on x�, x1, x2 space, with the axis of the
cylinder along x�. If we denote the radial and angular
coordinate on the ðx1; x2Þ plane by � and 
, respectively,
the case (14a) is then described by

½x�;�� ¼ 0; ½�;e�i
� ¼ 0; ½x�; e�i
� ¼��e�i
:

(15)

This space is a collection of NC cylinders of various radii.
There is a twisted Poincaré algebra which provides the
symmetry for this case, while the other case cannot be
generated by a twist [19]. In the above, ‘ and � are
deformation parameters of dimension length.
The SIMð2Þ case.—From the above discussions it be-

comes clear that, to have both the Kz and Jz invariant
noncommutative structures, we should take ��i linear in
both x� and xi; therefore, the two possibilities are

½x�; xi� ¼ i
�� 1

�þ 1
�ijfx�; xjg or (16a)

½x�; xi� ¼ i tan�fx�; xig; (16b)

preserving translational symmetry only along xþ (where �
is the dimensionless deformation parameter).
For neither of the above cases is there any twisted

Poincaré algebra of the form discussed in Ref. [9] which
provides these commutators [19]. The case (16b) in the
above-mentioned cylindrical coordinates x�, �, and 

takes the familiar form of a quantum (Manin) plane.
As mentioned above, the Cohen-Glashow VSR requires

translation invariance, which is realized only in the con-
stant ��� case; therefore, we continue with the discussion
of QFTs on the lightlike Moyal plane, as the VSR-invariant
theories. Further analysis of the linear and quadratic cases
will be postponed to future works [19].
NC QFT on lightlike Moyal plane as VSR-invariant

theory.—So far, we have shown that a Moyal plane with
lightlike noncommutativity is invariant under the Tð2Þ
VSR. Consequently, the NC QFTs constructed on this
space possess also the same symmetry [6], as well as
twisted Poincaré symmetry [7,8]. For any given QFT on
commutative Minkowski space, its noncommutative coun-
terpart, NC QFT, is obtained by replacing the usual product
of functions (fields) with the nonlocal Moyal � product (for
a review on NC QFTs, see [20]):

ð
 � c ÞðxÞ ¼ 
ðxÞei=2���@Q� ~@�c ðxÞ: (17)

Because of the twisted Poincaré symmetry, the fields carry
representations of the full Lorentz group [10,11], but they
admit transformations only under the stability group of
lightlike ���, Tð2Þ.
NC QFTs are CPT-invariant and satisfy the spin-

statistics relation [21–23]. However, as shown in
Ref. [21] for NC QED, C, P, and T symmetries are not
individually preserved: For the time-space noncommuta-
tivity, which comprises also the lightlike case, P invariance
requires also the transformation �0i ! ��0i, C invariance
requires ��� ! ����, and T invariance requires �ij !
��ij. Since ��� is invariant on the Moyal space, these
transformations cannot occur. Consequently, requiring P,
T, or CP invariance from NC QFT with Tð2Þ VSR sym-
metry is equivalent to taking � ! 0, in which case the
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emerging theory has full Poincaré symmetry, as predicted
in [1].

Discussion and outlook.—We have shown that lightlike
Moyal NC space provides a consistent framework for Tð2Þ
Cohen-Glashow VSR-invariant theories. The other VSR
groups Eð2Þ, SIMð2Þ, and HOMð2Þ are ruled out if the
origin of Lorentz violation is in the NC structure of space-
time, since the corresponding NC spaces are not transla-
tionally invariant. The realization of VSR as NC theories
has several advantages. (i) Despite the lack of full Lorentz
symmetry, one can still label fields by the Lorentz repre-
sentations. For the NC QFTs we can rely on the basic
notions of fermions and bosons, spin-statistics relation,
and CPT theorem [21–23]. (ii) There is a simple recipe
for constructing the NC version of any given QFT.
Noncommutativity introduces a structure, fixing the form
of the VSR-invariant action. (iii) In the NC setting we deal
only with a single deformation parameter [the coordinates
on the ðx1; x2Þ plane can be chosen such that �0 in (13) is
zero].

The parameter � of the NC QFT realization of Tð2Þ VSR
is of the dimension length-squared, and it defines the non-

commutativity scale �NC ¼ 1=
ffiffiffi
�

p
. To find bounds on �NC

we need to compare results based on the NC models to the
existing observations and data. These data can range from
atomic spectroscopy and Lamb shift (see, e.g., [24]) to
particle physics bounds on the electric-dipole moments
of elementary particles. Since the structure of the terms
involving the lightlike NC parameter is essentially the
same as in the more-studied case with space-space non-
commutativity [as it stems from the same � product (17)],
and based on explicit calculations [19], we can infer that
the bounds on the NC parameter will be of the same order
of magnitude as the previously calculated ones, i.e.,�NC >
10 TeV [24] (see also [25] for a similar bound coming
from clock-comparison experiments).

To construct a particle physics model based on the NC
realization for VSR, we need to fix a lightlike ��� in any of
the noncommutative models constructed so far, with ge-
neric noncommutativity. Although various basic features
are common to all NC QFTs constructed with the � product
(17), the lightlike case has some specific features which are
not shared by other NC QFTs on Moyal space-time.
Moreover, the lightlike NC QFTs are also unitary field
theories [15]. The construction of consistent lightlike NC
models may lead to the derivation of more stringent bounds
on�NC. The lightlike NC QFTs are expected to have many
features in common with the space-space NC case, which
has been thoroughly studied in the literature, and the main
results of that case should also hold for the lightlike case.
Clarifying which of the results carry over to the lightlike
NC QFT will be discussed in a forthcoming communica-
tion [19].
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