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The Einstein-aether theory provides a simple, dynamical mechanism for breaking Lorentz invariance. It

does so within a generally covariant context and may emerge from quantum effects in more fundamental

theories. The theory leads to a preferred frame and can have distinct experimental signatures. In this

Letter, we perform a comprehensive study of the cosmological effects of the Einstein-aether theory and

use observational data to constrain it. Allied to previously determined consistency and experimental

constraints, we find that an Einstein-aether universe can fit experimental data over a wide range of its

parameter space, but requires a specific rescaling of the other cosmological densities.
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The spacetime symmetry of local Lorentz invariance is a
cornerstone of modern physics [1], but is not inviolate.
Violations can occur in quantum gravity theories, with the
symmetry emergent and approximate at macroscopic lev-
els [2]. In the particle physics sector the symmetry has been
experimentally verified to extremely high precision [3]. On
the large scales characteristic of the gravitational sector,
however, constraints are much less certain. In this letter we
explore the extent to which precision cosmology can con-
strain a Lorentz-violating theory.

The theoretical workhorse for studying violation of
Lorentz symmetry in gravitation is the Einstein-aether
theory [4], a simple, elegant proposal for dynamically
violating Lorentz invariance within the framework of a
diffeomorphism-invariant theory. It is a refinement of the
gravitationally coupled vector field theories first proposed
by Will and Nordvedt in 1972 [5] and has been explored in
exquisite detail by Jacobson, Mattingly, Foster, and collab-
orators [6–8]. A Lorentz-violating vector field, henceforth
called the aether, will affect cosmology: it can lead to a
renormalization of the Newton constant [9], leave an im-
print on perturbations in the early Universe [10,11], modify
the propagation of cosmic microwave background (CMB)
photons [12], and in more elaborate actions it may even
affect the growth rate of stucture [13,14]. Calculations of
CMB power spectra have been reported for some aether
parameter combinations by [15]. Here we consider general
combinations and compare the results to experimental
data.

The action for the Einstein-aether is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�G
RþLðgab; AbÞ

�
þ SM

where gab is the metric, R is the Ricci scalar of that metric,
SM is the matter action, and L is constructed to be gen-
erally covariant and local. G is the bare gravitational
constant, not necessarily the locally measured value. SM
couples only to the metric gab and not to Ab and

L ðgab; AbÞ � 1

16�G
½Kab

cdraA
crbA

d þ �ðAbAb þ 1Þ�;
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b
d þ c3�

a
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b
c �

c4A
aAbgcd [16]. We will use the notation c12... �

c1 þ c2 þ . . . . The gravitational field equations for this
model take the form: Gab ¼ ~Tab þ 8�GTab where the
stress-energy tensor for the vector field ~Tab is given in
[4] and Tab describes the conventional fluids.
A number of constraints on the cis have been derived.

Most notably a parametrized post-Newtonian (PPN) analy-
sis of the theory leads to a reduction in the dimensionality
of parameter space such that c2 and c4 can be expressed in
terms of the other two parameters: c2 ¼ ð�2c21 � c1c3 þ
c23Þ=3c1 and c4 ¼ �c23=c1 [8]. Additionally, the squared

speeds of the gravitational and aether waves with respect to
the preferred frame must be greater than one so as to
prevent the generation of vacuum Čerenkov radiation by
cosmic rays [18]. We shall label this space of models as C.
A final constraint arises from considering the effects of the
aether on the damping rate of binary pulsars. The rate of
energy loss in such systems by gravitational radiation
agrees with the prediction of general relativity to one
part in 103. It has been shown [17] that, for the Einstein-
aether theory to agree with general relativity for these
systems, we require that cþ � c1 þ c3 and c� � c1 � c3
are related by an algebraic constraint (shown as the dashed
line in Fig. 4) [19]. A more exotic, but viable, subset of the
parameter space can be considered in which c1 ¼ c3 ¼ 0.
The PPN and pulsar constraints do not apply here and a
cosmological analysis is potentially the only way of con-
straining the values of the coupling constants. We shall
label this alternate space of models as E. In what follows
we will write down the equations in a general form and
then study the two subspaces C and E independently.
We now focus on cosmological scales and assume a

homogeneous and isotropic background spacetime in
which the metric is of the form gabdx

adxb ¼ �dt2 þ
aðtÞ2�ijdx

idxj where t is physical time, �ij is the identity

matrix, and aðtÞ is the scale factor. Throughout this Letter,
subscripts i and j will run 1 to 3. The vector field must
respect the spatial homogeneity and isotropy of the system
and so will only have a nonvanishing ‘‘t’’ component; this
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constraint fixes Ab ¼ ð1; 0; 0; 0Þ. The energy-momentum
tensor of the matter will include the standard menagerie:
photons, neutrinos, baryons, dark matter, and the cosmo-
logical constant.

In this background, the t-t component of the aether
stress-energy tensor is equal to ð3=2Þ�H2 where � � c1 þ
3c2 þ c3. For models C we have� ¼ �2cþc�=ðcþ þ c�Þ.
The fractional energy densities in the various components
are given by �iðaÞ � 8�G�iðaÞ=3H2

0 and �AE ¼
ð�=2Þ�i�i=ð1� �=2Þ where H0 ¼ 100h km s�1 Mpc�1

is the Hubble constant today and �i is the energy density
in the fluid component i. In quasistatic spacetimes the
aether exhibits tracking behavior such that the locally
measured value of Newton’s constant is actually GN ¼
G=ð1þ c14=2Þ [9]. For models C we have c14 ¼
2cþc�=ðcþ þ c�Þ [20]. Thus, given a value �i, the actual
�i is related to the value �Ni inferred using a locally
measured value of GN as: �i ¼ ð1þ c14=2Þ�Ni. Hence,
explicitly using our expression for �AE, the Friedmann
equation becomes:

H2 ¼ H2
0

2þ c14
2� �

X
i

�Ni:

To fully explore the cosmological consequences of the
aether, we must consider linear perturbations around the
background. We will do so in the synchronous gauge and
use conformal time coordinates: given gabdx

adxb ¼
�a2d�2 þ a2½�ij þ hij�dxidxj, the two scalar potentials

� and h are defined by: hijðx;�Þ¼
R
d3keik�x½k̂ik̂jhðk;�Þþ

ðk̂ik̂j� 1
3�ijÞ6�ðk;�Þ�. The aether field can be written as

Ad ¼ 1
a ð1; @iVÞ for a scalar V; the zeroth component is

fixed equal to a�1 by the gauge choice and the fixed-norm
constraint—see [10]. Instead of V itself, we choose to use
the variable: 	 � V � 1

2k2
ðhþ 6�Þ0 with which the evolu-

tion equations take a particularly instructive form.
The gravitational field equations are

ð1� 1
2�Þk2�0 ¼ 4�Ga2ikj�T0

j þ 1
2k

4c123	

and

ð1þ 1
2c14ÞðHh0 � 2k2�Þ ¼ �8�Ga2�T0

0

� 1
2ðc14 þ �Þ6H�0 � 3

2c14�f

þ c14ð1þ cþÞk2ð	0 þ 2H	Þ:
For models C we have c123 ¼ 2c2þ=3ðcþ þ c�Þ.

The aether equation of motion is
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where H is the conformal Hubble parameter, primes are

derivatives with respect to � and �f � �8�Ga2ðk̂ik̂j �
1
3�

j
i Þ�i

j, where �i
j is the traceless component of the

fluid stress-energy tensor. The homogeneous ‘‘sourceless’’
solution to the above equation during an era where a / �n

is 	ðk; �Þ ¼ �1�2n½f1ðkÞJð
; csk�Þ þ f2ðkÞYð
; csk�Þ�
where fi are functions to be fixed by boundary condi-
tions, J and Y are Bessel functions and the various con-
stants are defined through: b1 � �2n� ðc14 þ �Þ�
ðn2 þ nÞ=½c14ð1þ cþÞ�, 
 � ð1� 8nþ b1 þ b21Þ1=2 and
c2s � c123=ðc14ð1þ cþÞÞ. With c2s positive, the solutions
are damped and oscillatory solutions when csk� � 1 and
power law when csk� � 1 [13].
It was shown in [10] that the primordial scalar power

spectrum P� (where � is the trace perturbation to the
metric in the conformal Newtonian gauge) is modified
relative to that of a universe with no aether, ~P�, through

P� ¼ ~P�½
1� �

c14
cþ

1þcþ
�2 while 	 and 	0 are driven to a vanish-

ingly small value compared to their values at the onset of
inflation. We will work with the equivalent initial condi-
tions in the synchronous gauge.
To study these effects in detail, we have modified the

Boltzmann code CMBEASY [21] by adding a Newton-
Raphson solver for the Hubble parameter, and including
the aether components in the density and pressure; the
perturbation evolution has been modified by adding 	
and 	0 as the integrated components. In Fig. 1 we show
the effect of the aether on the angular power spectrum of
anisotropies in the CMB and the power spectrum of gal-
axies [we superpose the Wilkinson Microwave Anisotropy

FIG. 1 (color online). The angular power spectrum of the
CMB (bottom) and the power spectrum of galaxies (top) for a
sample of class C Einstein-aether models, with different cþ (with
c� chosen to satisfy the weak-field binary pulsar constraint—the
dashed line of Fig. 4) The other parameters have their �CDM
best-fit values, with the �i rescaled as described in the text.
Superposed are the WMAP and SDSS data sets.
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Probe (WMAP) and Sloan Digital Sky Survey (SDSS)
data] for a selection of parameters in class C.

The dominant effect for smaller values of cþ is on the
large-scale CMB, through the integrated Sachs-Wolfe ef-
fect; it leads to a suppression on large scales (which
curiously enough is favored by large-scale CMB data).
As expected, the overall growing mode of matter perturba-
tions is very weakly affected and the change on the power
spectrum of galaxies is marginal.

As is usual in cosmological model testing, we compute
parameter constraints using a Monte Carlo Markov Chain
(MCMC) [22]. We explore a six-dimensional parameter
space consisting of the fractional baryon density �b, the
fractional matter density �M, the Hubble constant H0, the
scalar spectral index nS, the optical depth �D, the overall
amplitude of fluctuations, the bias factor of SDSS galaxies
and the two aether parameters cþ and c�. We constrain pa-
rameters using the WMAP 3-year release, the Boomerang
03 release, and data from ACBAR and VSA [23], as well as
the SDSS and 2DF surveys [24,25]. We also use measure-
ments of the luminosity distance as a function of redshift
from supernovae Ia measurements [26] but have found that
these data sets have very little ability to constrain this class
of models.

The marginalized constraints from the CMB and large-
scale structure on the two aethereal parameters in model C
are shown in Fig. 4 [16]. The best-fit aether model is mildly
superior to standard �CDM cosmology, at about 2�, at a
cost of two extra parameters.

The soft lower limit at c� >�0:5 comes from a prior on
the baryon fraction. This signals an important character-
istic of these models: the strong correlation between the
fractional energy density in the aether, �AE, and the other
energy components. This is perhaps the primary result of
our analysis and is illustrated in Fig. 3: the CMB and large
scale structure (LSS) data restrict the background to evolve
as in the �CDM case, which in turn leads to a rescaling of
the different energy components in the presence of the

aether. Naturally this also affects the constraints on the
other cosmological parameters. These constraints, under
the �CDM and aether models with and without the weak
binary pulsar constraint, are shown in Table I. As expected,
the largest shift is seen in the �i.
As stated above, the CMB and LSS play the dominant

role in generating these constraints, and interestingly
enough this is through the change in the background evo-
lution and its effect on the metric perturbations, and not
necessarily through the presence of perturbations in the
vector field. Indeed, artificially switching off the perturba-
tions in the aether field has essentially no effect on the
power spectrum of LSS and a small effect (of approxi-
mately 10%) on the angular power spectrum of the CMB.
So far we have focused on models in class C, where we

found that the coupling constants are allowed to vary quite
widely. In the case of models in class E, the cosmological
data are far more restrictive. For example, fixing c1 ¼
c2 ¼ c3 ¼ 0 we find that �0:05< c4 < 0 (note that in

TABLE I. Mean and 1� error values of the marginalized like-
lihoods for a range of cosmological parameters. The left most
column is for �CDM with no aether, the central column for
general class C models, and the right hand column for class C
models with the weak pulsar constraint (on the dashed line of
Fig. 1).

Parameter �CDM General Weak pulsar

�ch
2 0:137� 0:004 0:097� 0:01 0:098� 0:01

�bh
2 0:022� 0:001 0:019� 0:002 0:019� 0:002

H0 69:7� 1:6 71:7� 2:0 72:5� 2:4
�D 0:08� 0:029 0:077� 0:027 0:078� 0:028
ns 0:955� 0:015 0:976� 0:02 0:984� 0:024
�� 0:671� 0:019 0:61� 0:05 0:67� 0:028
c1 � � � �0:46� 0:14 �0:26� 0:12
c2 � � � 0:34� 0:1 0:20� 0:09
c3 � � � �0:23� 0:1 �0:12� 0:05
c4 � � � 0:13� 0:09 0:05� 0:02

FIG. 2 (color online). The angular power spectrum of the
CMB (bottom) and the power spectrum of galaxies (top) for a
sample of exotic class E Einstein-aether models where c1 ¼
c2 ¼ c3 ¼ 0. The other parameters have their �CDM best-fit
values, with the radiation density modified to account for the
change in the gravitational constant. Superposed are the WMAP
and SDSS datasets.

FIG. 3. Joint constraints on the fractional aether density �AE,
with the physical dark matter density �ch

2, the physical baryon
density�bh

2, and the fractional � density��. The contours are
1 and 2�.
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this case �AE ¼ 0). If we allow c2 to be nonzero we find
that both c2 and c4 must be in [�0:01, 0]. The reason for
this constraint is illustrated in Fig. 2; at low ‘ the integrated
Sachs-Wolfe effect induced by the modified potentials is
large enough to disrupt the C‘. These are the strongest
constraints on these parameters that currently exist.

In this Letter we have studied the effect of Lorentz
violation on cosmology as parametrized by the Einstein-
aether model. We have found that Lorentz violation in this
form is compatible with current cosmological data and,
combined with other noncosmological probes we have
found constraints on cþ and c�. The data also require the
rescaled combination of density parameters, in which the
background evolution is unchanged from a �CDM uni-
verse. We have also found tight constraints on the other
allowed range of parameter space E, which has, until now,
been relatively unconstrained by other methods.
Collectively these constraints arise from tests on distance
scales spanning more than 15 orders of magnitude.

There are of, course, other possible ways of parametriz-
ing Lorentz violation which are not encompassed by the
Einstein-aether model. In particular, one may relax the
fixed-norm constraint on the aether field [27] or couple it
directly to the matter content of the Universe [3]. Such
theories tend to have a much stronger effect on the evolu-
tion of the background cosmology [28] or lead to distinct
experimental signatures [29]. Hence the results presented
here are currently the most comprehensive (though con-
servative) constraints on the cis, and thus on Lorentz-
violating vector theories.
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