
Abundance of Regular Orbits and Nonequilibrium Phase Transitions
in the Thermodynamic Limit for Long-Range Systems

R. Bachelard,1 C. Chandre,1 D. Fanelli,2 X. Leoncini,1 and S. Ruffo2

1Centre de Physique Théorique, CNRS—Aix-Marseille Université, Luminy, Case 907, F-13288 Marseille cedex 9, France
2Centro interdipartimentale per lo Studio delle Dinamiche Complesse (CSDC) and INFN

and Dipartimento di Energetica ‘‘Sergio Stecco,’’ Universitá di Firenze, via s. Marta 3, 50139 Firenze, Italia
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We investigate the dynamics of many-body long-range interacting systems, taking the Hamiltonian

mean-field model as a case study. We show that regular trajectories, associated with invariant tori of the

single-particle dynamics, prevail. The presence of such tori provides a dynamical interpretation of the

emergence of long-lasting out-of-equilibrium regimes observed generically in long-range systems. This is

alternative to a previous statistical mechanics approach to such phenomena which was based on a

maximum entropy principle. Previously detected out-of-equilibrium phase transitions are also reinter-

preted within this framework.
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The vast majority of phenomena observed in nature
result from complex interactions present in large assem-
blies of elementary constituents. Awidespread observation
is the emergence of regular trajectories despite the com-
plexity of the underlying network of couplings. A success-
ful approach to describe the collective behavior of large
assemblies of particles is traditionally provided by statis-
tical mechanics. The theoretical foundation of equilibrium
statistical mechanics relies upon the hypothesis of ergo-
dicity, i.e., the agreement of time with ensemble averages.
Arguing for an effective degree of global mixing of dy-
namical trajectories in phase space implies ergodicity and
thus the validity of statistical mechanics [1]. Thermo-
dynamic behavior is obtained in the limit where the num-
ber of degrees of freedom goes to infinity, which offers
innumerable pathways to chaos. Indeed, in this limit regu-
lar regions (invariant tori) do not possess enough dimen-
sions in phase space to prevent trajectories from spreading,
while the largest fraction of the phase space is occupied by
chaotic motion, hence sustaining mixing [2].

However, the fact that any weak nonlinearity would
imply ergodicity has been vigorously debated since the
pioneering work of Fermi, Pasta, and Ulam (FPU) [3] on
the dynamics of oscillators interacting via short-range
couplings. Contrary to expectations, the celebrated FPU
chain exhibits a recurrent behavior on very long times,
violating ergodicity. Nowadays, there is growing evi-
dence that, for generic initial conditions, the relaxation
time to equilibrium remains finite in the thermodynamic
limit [4]. On the contrary, the question of relaxation to
equilibrium is still open when long-range forces come
into play [5,6]. Indeed, systems with long-range inter-
actions have been shown to display an extremely slow
relaxation to equilibrium. More specifically, out-of-
equilibrium metastable regimes have been identified,
where the system gets trapped before eventually attaining
its asymptotic state [7,8]. The equilibration time increases

with system size and formally diverges in the thermody-
namic limit, leading to a breaking of ergodicity. For gravi-
tational systems the approach to equilibrium has never
been proven and seems problematic. Galaxies could there-
fore represent the most spectacular example of such far-
from-equilibrium processes [9], but analogous phenomena
have also been reported in fundamental problems of
plasma physics [10]. These metastable states have been
termed quasistationary states (QSS) in the literature and
often represent the solely accessible experimental regimes
(e.g., in the free electron laser [11]). A relevant feature of
long-range systems is the self-consistent nature of the
interaction of a particle with its ‘‘local field,’’ which itself
results from the combined action of all the other particles
or of an ‘‘external field’’ like for wave-particle systems
[10]. It is exactly this self-consistency which finally entails
the widespread regularity of the motion. Besides that, one
observes the presence of classes of initial states that show
different time evolutions.
The development of a systematic theoretical treatment

of the QSS, which would enable us to unravel the puzzle of
their ubiquity, is still an open problem. Both the self-
consistent nature of the interaction and the strong depen-
dence on the initial condition suggest that QSS could be
related to the presence of some type of regular motion. The
traditional approach to clarifying the emergence of regular
trajectories is based on the following result: If the
Hamiltonian system under scrutiny is close to integrable,
Kolmogorov-Arnold-Moser [12] theory proves that the
phase space is filled with invariant tori on which the motion
is quasiperiodic. In this framework, however, increasing
the number of particles enhances the contribution of cha-
otic trajectories [2], in stringent contradiction with the
observation that QSS prevail in the large N limit.
Therefore the aforementioned scenario cannot be invoked
to explain the presence of regular motion in systems with
long-range interactions.
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A first purpose of this Letter is to put forward a different
interpretative framework. We argue that tori can form in
phase space also as a result of a self-consistent interaction
in the thermodynamic limit. As we shall demonstrate,
while for a small number N of degrees of freedom the
single particle motion of a paradigmatic system with long-
range interaction is erratic, the trajectories become more
and more regular asN ! 1. These trajectories arise from a
low-dimensional time dependent effective Hamiltonian.

For systems with long-range interactions, the depen-
dence on the initial condition can materialize in the form
of a true out-of-equilibrium phase transition: By varying
some crucial parameters of the initial state, one observes
a convergence towards asymptotic states (in the limit N !
1) with different macroscopic properties (e.g., homoge-
neous or inhomogeneous) [13]. This phase transition has
been interpreted by resorting to Lynden-Bell’s theory of
‘‘violent relaxation’’ [14], which is briefly discussed in the
following with reference to a specific model. As a second
purpose of this Letter, we provide a microscopic, dynami-
cal, interpretation of this transition in terms of a sharp
modification of the properties of the single particle orbits,
corresponding to a change of the effective Hamiltonian.
Our ultimate aim is to suggest a unifying picture that
potentially applies to systems where collective, organized,
phenomena emerge from the globally coupled sea of indi-
vidual components.

The Hamiltonian mean-field (HMF) model [15] is
widely referred to as the benchmark for long-range systems
and analyzed for pedagogical reasons. The model, which
describes the evolution of N particles coupled through an
equally strong, attractive, cosine interaction, is specified by
the following Hamiltonian:

H ¼ XN
i¼1

�
p2
i

2
þ 1

2N

XN
j¼1

½1� cosð�i � �jÞ�
�
; (1)

where �i and pi label, respectively, the position of particle i
on the unit circle and its corresponding momentum. Note
that Hamiltonian (1) can also be seen as a simplified
version of the gravitational [16] or plasma [17] sheets
model when considering only the first harmonic in the
Fourier expansion of the potential. To characterize
the behavior of the system, it is convenient to intro-
duce the ‘‘magnetization’’ M ¼ 1

N ð
P

cos�i;
P

sin�iÞ ¼
Mðcos�; sin�Þ, which quantifies the degree of spatial
bunching of the particles (homogeneity versus inhomoge-
neity). We here consider waterbag initial conditions, con-
sisting of particles uniformly distributed in a rectangle
½��0; �0� � ½�p0; p0� in the (�; p) plane. These states
bear a magnetization M ¼ M0 ¼ sinð�0Þ=�0, the associ-
ated energy per particle being U ¼ p2

0=6þ ð1�M2
0Þ=2.

When performing numerical simulations, starting from the
waterbag initial condition, the system gets usually frozen
in a QSS of the type discussed above [7,8].

The individual particle i obeys the following equations
of motion _pi ¼ �M sinð�i ��Þ and _�i ¼ pi, where M

and � are functions of all the positions of the particles.
Numerical observations suggest that, for large enough
values of N, both the magnetization M and the phase �
develop a specific oscillatory time dependence. Hence, the
single particle motion turns out to be governed by a time
dependent one degree of freedom (often referred to as a one
and a half degree of freedom) effective Hamiltonian. This
justifies the investigation of the phase space properties of
the QSS using a technique inspired by that of Poincaré
sections. In particular, we consider the time average �M
(after a transient) and record the positions and momenta of
a few selected particles (�i; pi) when MðtÞ ¼ �M and
dM=dt > 0 (sinceM typically shows an oscillatory behav-
ior). The resulting stroboscopic sections are displayed in
Fig. 1. Two different phase space structures are found
depending on the choice of the initial pair (M0; U), one
with monocluster and the other with a bicluster. The mono-
cluster QSS displays a nonzero magnetization (inhomoge-
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FIG. 1 (color online). Poincaré sections of a few selected
particles of one trajectory of Hamiltonian (1) for N ¼ 2� 105

in the QSS regime for two different waterbag initial conditions:
ðM0; UÞ ¼ ð0:6; 0:54Þ (upper panel) and ðM0; UÞ ¼ ð0:6; 0:88Þ
(lower panel). The former returns a single cluster, which gives
a nonzero magnetization QSS (MQSS � 0:5), while the latter

shows two symmetric clusters, which produce a QSS with a
small magnetization. In the bicluster regime (lower panel) the
presence of a large set of rotational tori implies a substantially
lower magnetization level, whereas the librational tori around
the two clusters are responsible for the residual magnetization.
The color code corresponds to the values of the action variable
associated with individual particles.
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neous phase), while the bicluster QSS has a small residual
magnetization (homogeneous phase).

The monocluster QSS can be ideally mapped onto a
collection of weakly interacting pendula. As revealed by
our stroboscopic analysis, particles evolve on regular
tracks, which are approximately one dimensional, though
they do manifest a degree of local diffusion (thickness). For
the bicluster QSS, the Poincaré section shows a phase
portrait which closely resembles the one obtained for a
particle evolving in the potential of two contrapropagating
waves. These latter interact very weakly, as the associated
propagation velocities appear rather different.

In order to get a quantitative estimate of the thickness of
the tori as a function of the total number of particles, we
focus on the monocluster QSS. Figures 2(a)–2(c) display
the single particle phase space for increasing values of N.
A clear trend towards integrability is observed as quanti-
fied in Fig. 2(d), where the thickness is plotted versus N.

Summing up, we have assessed that the single particle
motion of a typical long-range interacting system becomes
progressively more regular as the number of particles is
increased. This is at variance with what happens for sys-
tems with short-range interactions and provides a different
interpretation of the abundance of regular motion in long-

range dynamics. In addition, we have seen that the features
of the single particle motion depend on the choice of the
initial condition. A natural question then arises: what is the
link between the macroscopic properties of the different
QSS with the change observed in the single particle dy-
namics? Anticipating the answer, we will see that this is
related to a bifurcation occurring in the effective
Hamiltonian.
In the thermodynamic limit, the evolution of the single

particle distribution function fð�; p; tÞ is governed by the
Vlasov equation [18]. This equation also describes the
mean-field limit of wave-particle interacting systems
[10]. It can be reasonably hypothesized that QSS are sta-
tionary stable solutions of the Vlasov equation [8].
Following these lines, a maximum entropy principle, pre-
viously developed in the astrophysical context by Lynden-
Bell [14], allowed one to predict [13,19], for the HMF
model, the occurrence of out-of-equilibrium phase transi-
tions, separating distinct macroscopic regimes (magne-
tized or demagnetized) by varying selected control
parameters which represent the initial condition.
The central idea of Lynden-Bell’s approach consists in

coarse graining the microscopic one-particle distribution
function fð�; p; tÞ by introducing a local average in phase
space. Starting from a waterbag initial profile, with a
uniform distribution f0, a fermionic entropy can be asso-
ciated with the coarse-grained profile �f, namely,

s½ �f�¼�
Z
dpd�

� �f

f0
ln

�f

f0
þ
�
1�

�f

f0

�
ln

�
1�

�f

f0

��
: (2)

The corresponding statistical equilibrium, which applies to
the relevant QSS regimes, is hence determined by max-
imizing such an entropy, while imposing the conservation
of the Vlasov dynamical invariants, namely, energy, mo-
mentum, and norm of the distribution. The analysis reveals
the existence of an out-of-equilibrium phase transition
from a magnetized to a demagnetized phase [13,19].
We here reinterpret the transition in a purely dynamical

framework, as a bifurcation from a monocluster QSS to a
bicluster QSS. Aiming at shedding light on this issue, we
proceed as follows: For fixed M0 and N, we gradually
increase the energy U and compute the Poincaré sections,
as discussed above. We then analyze the recorded sections
by identifying the number of resonances and measuring the
associated width and position (both calculated in the p
direction). Results forM0 ¼ 0:6 are displayed in the lower
panel of Fig. 3: the shaded region, bounded by the dashed
lines, quantifies the width of the resonances. As antici-
pated, one can recognize the typical signature of a bifur-
cation pattern. Repeating the above analysis for different
values of the initial magnetization M0 allows us to draw a
bifurcation line in the parameter space (M0; U). In the
upper panel of Fig. 3 we report both this bifurcation
(full) and the Lynden-Bell phase transition (dashed) lines
[13]. The two profiles resemble each other qualitatively,
and even quantitatively for small M0. The change of the
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FIG. 2 (color online). Poincaré sections of a few selected
particles of one trajectory of Hamiltonian (1), when the system
size is varied (for M0 ¼ 0:6 and U ¼ 0:54). The thickness of the
tori decreases as N is increased (see text). For large enough
values of N, the magnetization M is found numerically to
approximately scale asMðtÞ � �Mþ �MðtÞ cos!t, with j�Mj �
�M and j@t�Mj � !jMj. Ignoring the time dependence of �M
and using a reduced model of test particles in the external field
MðtÞ, one obtains stroboscopic sections which are qualitatively
and quantitatively similar to the ones reported in this figure, with
the unique difference that the thickness is zero [22]. Considering
a torus with action J � 1:9, we plot in (d) its variance �J
computed over a time interval �t ¼ 300 as a function of N.
The scaling 1=N (dotted line) looks accurate over a wide range
of N values.
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bifurcation type from subcritical to supercritical sig-
naled by the opening of a gap in the resonance plot
could be associated with the change of the order of the
phase transition from first to second. These results strongly
corroborate our claim that the out-of-equilibrium phase
transition from magnetized to nonmagnetized QSS corre-
sponds to a bifurcation in the single particle dynamics.

The phenomena here discussed are also found (data not
shown) in the context of Hamiltonian models deputed to
describe the interaction between a beam of charged par-
ticles and a set of self-consistently evolving waves [20]. A
large number of relevant applications, facing the long-
range nature of the couplings among constituents, fall
within this rather wide category, ranging from plasma
models, traveling wave tubes, and free electron lasers
[21]. More concretely, the same tendency towards integra-
bility is found in these latter settings, a fact which holds
promise to eventually result in novel insight, potentially
relevant for the functioning of the devices.

In summary, investigating the dynamics of systems with
long-range interactions allowed us to come to an interest-

ing and general conclusion: a universal trend to organi-
zation or integrability of the single particle dynamics is
found as the system size (number of particles) is increased.
Phase space structures are identified and interpreted
as invariant tori of a time dependent one degree of free-
dom Hamiltonian. Based on this analysis, the out-of-
equilibrium statistical phase transition is here understood
from the viewpoint of microscopic dynamics, as a bifurca-
tion occurring in the effective Hamiltonian which describes
the single particle dynamics.

[1] G. Gallavotti, Statistical Mechanics: A Short Treatise
(Springer, Berlin, 1999).
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FIG. 3. Upper panel: Phase diagram in the control parameter
plane (M0; U) of the out-of-equilibrium phase transition of the
HMF model from a magnetized to a demagnetized phase. The
solid curve pinpoints the position of the bifurcation from the
monocluster to the bicluster QSS. The dashed line stands for the
theoretical prediction based on Lynden-Bell’s violent relaxation
theory (see text). The star refers to the tricritical point separating
first from second order phase transitions. Lower panel: The
bifurcation is monitored as function of U, for M0 ¼ 0:6. The
gray zones highlight the width of the resonances.
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