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We experimentally investigate the role of localization on the adiabaticity of loading a Bose-Einstein
condensate into a one-dimensional optical potential comprised of a shallow primary lattice plus one or two
perturbing lattice(s) of incommensurate period. We find that even a very weak perturbation causes
dramatic changes in the momentum distribution and makes adiabatic loading of the combined lattice
much more difficult than for a single period lattice. We interpret our results using a band-structure model

and the one-dimensional Gross-Pitaevskii equation.
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Disorder plays an important role in condensed matter
systems, [1,2] with connections to quantum chaos [3], but
is difficult to systematically study due to the challenge of
creating reproducible and quantifiable disorder. The con-
trol available in ultracold atom systems [4] makes it an
attractive platform to study disorder [5—8]. To date much of
the work adding disorder to ultra-cold atom systems has
explored time-independent properties, but the long time-
scales associated with cold atoms allows investigation of
dynamical properties as well [5,9-11]. In this work we
examine the ability of a quasidisordered system to adia-
batically follow changes in the Hamiltonian. The presence
of disorder produces a complicated eigenvalue spectrum,
which greatly affects the adiabaticity criteria. The physics
of localization phenomena also has a significant impact on
time-dependent processes, such as adiabaticity. Small per-
turbations to the Hamiltonian can cause large changes to
the ground state wave function over large length scales,
making it difficult for the system to adiabatically follow
changes. One recent theoretical study shows that adiaba-
ticity in gapless systems is nontrivial, particularly in lower
dimensions [12]. Here we show that even in a gapped
system such as ours, adiabaticity is complicated by the
presence of disorder.

We study adiabaticity in a quasidisordered system by
adding one or two weak incommensurate lattices to a 1D
optical lattice loaded with a Bose-Einstein condensate
(BEC). Localization occurs in both disordered and strictly
incommensurate potentials, [8,13—15] although with dif-
ferences which tend to disappear in finite-sized systems
such as ours. We observe a complex momentum distribu-
tion of the atoms due to the presence of weak perturbing
lattices following a ramped loading process that would be
nearly adiabatic for a single lattice. We gain insight into the
distributions from single-particle band structure, and ob-
serve that the effects of the perturbations disappear as
interactions increase, as they suppress the long-wavelength
density modulation of the wave function.
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PACS numbers: 03.75.Kk, 03.75.Lm, 64.60.Cn, 67.85.Hj

We form a BEC of ~10* 8’Rb atoms in the state
|F =2, m;=2) in a magnetic trap with o, ~ 0, =
27 X 410 Hz and w, = 27 X 120 Hz. To reduce the ef-
fects of interactions, the trap is weakened to final fre-
quencies o, = 27 X 40 Hz, w,~ 27 X 20 Hz, and
o, = 2 X 30 Hz. We load the BEC into a 1D optical
potential, created by the addition of a primary and perturb-
ing lattice(s). The total potential is

M
Viot = ?(wﬁxz + a)fy2 + w?7?) + Vysin?(k;z)
+ Vysin(kyz) + Visin?(ksz), (1)

where M is the atomic mass, k; = 27/A, and A =
796.6 nm. The ratios k,/k; = 0.806 = 0.002 and k3 /k; =
0.919 £ 0.004 are extracted from images of atomic dif-
fraction. For most of our experiments, the lattice depths are
Vi =4.6 = 0.3E,, and V,3/V; = 0.059 = 0.003, respec-
tively, where E.. = hzk%/ZM. To prevent interference
between the lattices, we detune the beams several MHz
from each other so the coupling terms between the beams
oscillate rapidly compared to the atomic motion. The
lattices are created by reflection off an in-vacuum gold
mirror situated ~2 mm from the magnetic trap center.
Each beam is reflected at a different angle (6, = 180°,
6, = 143°, and 65 = 155°) to yield a 1D pseudodisor-
dered potential [16]. Because the surface that defines the
standing waves nodes is the same for all three lattices, they
are phase-locked together. We load the atoms into the
combined lattices by ramping up the intensities linearly,
keeping a fixed ratio between V, 3 and V. A ramp time of
1 ms is chosen for most experiments and is sufficiently
long to ensure loading a magnetically trapped BEC into the
lowest band of the primary lattice. In order to remain
adiabatic, the excited state population, |a, ,(f)|*, must
stay <1, where n is the band index, and ¢ is the quasi-
momentum. One can calculate a corresponding time scale
using
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which, for loading a ’Rb BEC into a single lattice at k; =
27/ A, is satisfied for times much greater than 5 us [17—
19]. This short time scale is because the nearest excited
band with allowed transitions is approximately 472k /2M
separated from the ground band with initial ¢ = 0, even for
an arbitrarily weak lattice with reciprocal lattice vector of
2k. As the lattice depth increases, the bands continue to
separate. Adiabaticity becomes difficult for g near the band
edge, where the initial energy gap vanishes. For our experi-
ments, the initial momentum range is *0.15k;.
Additionally, the single-particle band picture begins to
break down as the BEC becomes strongly interacting.

To assess our ability to adiabatically load a lattice, we
perform two types of experiments. In all experiments, we
absorption image the cloud after 22 ms of time-of-flight.
Following the ramped loading and a variable hold time, we
abruptly turn off both the lattice and the magnetic trapping
potentials. The image yields the momentum distribution of
the atoms trapped in the lattice (interactions during time-
of-flight are negligible). In the second method, we slowly
ramp down the lattice and then release from the magnetic
trap. If the process is fully adiabatic, the cloud should
return to the momentum distribution of the original BEC.
For comparison, we present absorption images after the
sudden turn-off, with and without the perturbative lattice(s)
in Fig. 1. The existence of the weak perturbing lattice
[Figs. 1(c)-1(e)] markedly modifies the momentum distri-
bution with the appearance of new peaks, even though the
perturbing lattice is so weak that it does not produce any
observable diffraction alone [Fig. 1(b)]. In Ref. [13] it was
suggested that an indication of localization is the appear-
ance of additional momentum peaks in the matter-wave
interference pattern.

In order to understand why such a small perturbation has
dramatic effects on the momentum structure and excited
fraction we use single-particle band structure. Even if the
perturbing lattice is strictly incommensurate with the pri-
mary lattice (ky/k; = a, an irrational number), we can
approximate « as a ratio of two large integers, f/g. In a
finite system such as ours where the BEC occupies = 70
sites of the primary lattice and does not extend over many
periods of the beat frequency lattice (created by the com-
bination of the lattice potentials) we expect this approach
to yield reasonable predictions [20].

Assuming no excitations to higher bands, we predict the
momentum distribution for each lattice configuration using
f/g =9/11 and f'/g = 10/11, approximations to the
experimental ratios. We present the results of this calcu-
lation overlaid with population amplitudes (green bars)
extracted from fits of our data in Fig. 1. In the case of
three lattices, experimental resolution limits our ability to
resolve the structure, and is represented by wider bars. The
combination of the lattices creates a complex momentum
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FIG. 1 (color online). Left: Absorption images of a BEC
loaded into different lattices for wggc = 100 Hz after 20 ms
TOF: (a) V| =4.6E,.. and (b) V, = 0.3E..; (c) V| + Vy;
(d) Vi +V,+ V3, with V, = V3 = 0.15E; (e) 7.5E,. and
0.5E,.. lattice. We turn on lattices using a 1 ms linear ramp
followed by a 1 ms hold and abrupt turn-off. Right: Using the
data from the absorption images [(a),(c)—(e)] we extract the
relative population amplitudes and overlay them with a band-
structure calculation (no interactions) of the ground state mo-
mentum distribution.

structure, and the band-structure calculation is in good
qualitative agreement with our measurements. However,
since the band-structure calculation assumes no excitations
and a 1 ms ramp causes depletion of the ground band, the
predicted populations do not quantitatively agree with the
data for multiple lattices. This mismatch increases as the
depths of both the primary and perturbing lattice(s) are
increased. For deep lattices [Fig. 1(e) and 1(i)], depending
on the choice of f/g, band structure predicts peaks spaced
at k;/g, closer than the beat frequency, yet the envelope
does not change. We find these disappear much more
rapidly than the beat frequency peaks as interactions in-
crease (see below).

We examine the changing wave function and the corre-
sponding band structure in Fig. 2. Using the k vector of the
primary lattice to determine the size of the first Brillioun
zone, we plot the first two bands for the case of one and two
lattices. The dominant effects of the perturbing lattice are
to open small gaps in the ground band and slightly flatten
the band. Starting at ¢ = 0 and traveling along the band,
the first gap corresponds to quasimomentum of (k; — k).
If instead one chooses the first Brillioun zone to span
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+(k, — k,), there exists a new band that is much lower in
energy than the first excited band in the single lattice case,
which determines a new energy scale relevant to adiaba-
ticity. This new energy scale is also responsible for local-
izing the wave function at the spatial period corresponding
to the beat frequency [Fig. 2(c) compared to Fig. 2(b)]. In
order to satisfy the adiabaticity condition [Eq. (2)] for two
lattices with our parameters (V, = 0.059 V|, k;/k, = 0.8),
the loading ramp must be much longer than 4 ms, a
thousand times longer than for a single lattice. This is
shown in Fig. 2(e), where we calculate the depletion of
population in the ground band for different ramp rates as a
function of primary lattice depth for the case of three
lattices. The inset of Fig. 2(e) depicts an expanded view
of ramp times yielding less than 5% excitation. Figure 2(f)
shows the depletion of the ground state as a function of
lattice depth for a ramp time of approximately 250 us for
the case of one, two, and three lattices.

Since it is often the case experimentally that we start
with a BEC with nonzero ¢ (due to residual motion in the
magnetic trap), we show curves for loading a BEC with
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FIG. 2 (color online). (a) First two bands for a single lattice
and a primary plus perturbing lattice which shows gaps in the
ground band. (b)—(c) Plot of an example wave function multi-
plied by a Gaussian envelope (b) without and (c) with a perturb-
ing lattice. (d) Probability amplitude, p, as a function of lattice
depth of the p = 0 peak for a single lattice and a combined
potential. The changes in slope correspond to the depths the
atoms become localized at different spatial frequencies.
(e) Calculation of ground band population for differing ramp
times [(1) 25 ws, (ii) 250 ws, (iii) 2.5 ms] for three total lattices;
(iv) loading a single lattice (ramp time of 2.5 ms). Inset in (e) is a
zoomed-in view comparing (iii) and (iv). (f) Calculated ground
state population for (ramp time 250 us) loading a BEC with
initial ¢ = 0 (i) single lattice, (ii) two and (iv) three lattices and
(iii) two and (v) three lattices with initial g = 0.1.

q = 0.1k; into a potential comprised of two and three
lattices. This value of g was chosen to lie within the new,
smaller first Brillioun zone. These curves show that the
addition of perturbing lattices is the dominant effect on the
adiabaticity criteria. For ¢ = 0.1k, the adiabaticity time
scale approaches 10 ms, compared to virtually no change
for a single lattice with initial ¢ of 0.1k;. We experimen-
tally observe that by ramping up the incommensurate
lattice potential and then ramping down, longer ramp times
(5 ms compared to 250 ws) are qualitatively better (less
excitations), but due to interactions, we are never able to be
fully adiabatic. Although excitation to higher bands may
produce new momentum peaks, for the data presented in
Fig. 1(c), we predict that between 1 and 5% of the popu-
lation is excited depending on initial quasimomentum.
Thus most of the observed changes in the momentum
distribution can be ascribed to modification of the ground
band wave function, i.e., localization.

The effects seen here are a result of the incommensur-
ability of the lattices. For experiments using commensurate
lattices [19] where two lattices had a carefully chosen ratio
of 3:1, the criteria for adiabaticity with respect to the band
structure is not significantly altered. In this case the higher
order momentum peaks due to the perturbing lattice over-
lap the beat frequency peaks, which results in the wave
function having modulation only at that spatial frequency.
This difference can be seen by calculating the ground state
wave function for the two cases. For approximately incom-
mensurate lattices, the perturbation has a strong effect,
with small spatial frequencies appearing [Fig. 2(c)]. In
order to further quantify this dramatic change, we plot
the population of the p = 0 peak, py, as a function of
lattice depth for a single lattice, and for a primary lattice
with a perturbing lattice (with V, = 0.059V;). The black
points are experimental measurements of the peak ampli-
tude, which show a dramatic reduction of p, when the
perturbing lattice is added. We show two band-structure
calculations for f/g = 4/5 (dashed) and 9/11 (solid), both
falling within the error bars of our experimental ratios. The
difference between these ratios is the predicted population
growth in sub-beat frequency spaced momentum peaks for
f/g = 9/11. The error bars represent statistical uncertain-
ties in populations and lattice depths (due to fluctuations in
lattice beam intensity). We expect that because the turn-on
of two lattices is not fully adiabatic there will be additional
depletion of the central peak due to excitations into higher
bands, as observed.

The production of low spatial frequency, long-
wavelength components in the wave function with the
application of weak incommensurate lattices yields insight
into the connection between disorder, localization, and
incommensurate systems. In the canonical view of local-
ization, destructive interference due to reflections over
long distances leads to localization of the wave function
[2,21]. Here we see that a single incommensurate perturber
yields a complex long-wavelength structure. If we add a
second perturber, getting closer to true disorder, we see
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FIG. 3 (color online). Left: (a)-(c) Absorption images in a
traps with e = (100, 400,2500) Hz with a primary plus
one perturbing lattices. Right: (d)—(f) Results of GP simulation
for (a)—(c) showing the effects of interactions.

even more momentum components. Experimentally, due to
finite resolution, this appears as a broadening of the distri-
bution [Fig. 1(d)]. Comparing three lattices to two, we
observe a larger spread in the central feature, as well as a
corresponding decrease in optical depth. This indicates that
there are unresolved peaks beneath the overall envelope. If
something competes with these long range interferences,
such as atom-atom interactions, we can expect localization
phenomena to be drastically modified [11]. Indeed, until
recently [5,6] Anderson localization had not been seen in
cold-atom systems due to the effect of atom-atom
interactions.

To study the effects of interactions in our system, we
perform experiments in three different magnetic traps of
differing frequencies with chemical potentials of
upec/h = (2500, 400, 100) Hz. We observe (Fig. 3) that
as the overall confinement increases, the structure in the
interference pattern (the k;-k, momentum peaks) disap-
pears and the overall size of the cloud, after TOF, increases.
We compare results of the noninteracting band-structure
model to simulations of our system using the 1D Gross-
Pitaevskii equation (GPE) [22]. The simulations using the
GPE predict that in the moderately tight trap (ugpc/h =
400 Hz), the k; — k, (beat frequency) peaks slightly per-
sist, and entirely disappear in the tightest trap. Figure 3
shows absorption images with results of GPE simulation in
three different traps. In our system, we cannot decouple the
size of the sample from interactions, which both contribute
to the amount of spatial localization. This can be done if
one utilizes a Feshbach resonance to vary the strength of
the scattering length [6]. We calculate the effect of arbi-
trarily increasing the interactions in our weakest trap
(where the structure is most apparent) and see that the

sub-beat frequency peaks vanish rapidly, followed by the
ki — k, peaks. This can be understood in that interactions
drive transitions between states of different quasimomen-
tum, washing out the discrete low momentum features, and
destroying the long range spatial periodicity of the wave
function.

In conclusion, we have presented data indicating that
small perturbations to a 1D lattice system in the form of
quasidisorder, while leading to localization of the wave
function, also drastically change the dynamics of the sys-
tem. We present a theoretical treatment which suggests that
although we are only slightly modifying the energy of the
system, the large alterations of the wave function demand
time scales for adiabaticity that are orders of magnitude
longer than for loading a single lattice. Because of the
sensitivity of the adiabaticity criteria in the presence of
perturbations, one should identify and characterize any
forms of disorder present in the potential, intentional or
otherwise, when studying disordered lattice systems. This
work shows that disorder can have a strong influence on
dynamics, and that the long time scales of cold-atom
optical lattice systems makes them ideal for further
explorations.
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