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We propose an experiment to directly prove the commutation relation between bosonic annihilation and

creation operators, based on the recent experimental success in single-photon subtraction and addition. We

devise a single-photon interferometer to realize coherent superpositions of two sequences of photon

addition and subtraction. Depending on the interference outcome, the commutation relation is directly

proven or a highly nonclassical state is produced. Experimental imperfections are assessed to show that

the realization of the scheme is highly feasible.
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The uncertainty principle, which is at a rudiment of
quantum physics, is due to the nonzero commutation rela-
tion between complementary observables. The quantum
algebra of the commutation relation plays an important
role in many of the paradoxes and applications of quantum
physics. In particular, the bosonic commutation relation

½â; ây� ¼ 1 (1)

between creation ây and annihilation â operators is one of
the fundamental ones, which is directly related to the
commutation relation between position and momentum
observables.

On the other hand, the wave-particle duality is another
important doctrine of quantum physics. The beauty of
quantum physics lies in the fact that we can explain the
seemingly contradictory riddle of duality using one theory.
Single-photon interference is one of the examples due to
the duality of nature and accurately interpreted by quantum
physics. The duality and uncertainty principle have been
studied since the birth of quantum physics and there have
been many experimental evidences which confirm quan-
tum mechanical predictions. However, as far as we are
aware, there has not been a direct proof of the bosonic
commutation relation, which we are proposing in this
paper based on single-photon interference.

We have recently witnessed experimental successes in
photon-level operations to subtract [1] and add [2] a single
photon in a light field. These prove to be important as they
are essential building blocks for quantum-state engineering
and provide a tool to experimentally show the foundations
of quantum mechanics [3]. It is remarkable that adding a
definite number of photons any classical field can be made
into a nonclassical one as its statistics in phase space
cannot be described by a classical theory [4]. For the recent
interest of quantum entanglement, it has been experimen-
tally shown [5] that entanglement can be enhanced by

subtracting a photon from one of the two modes of a
two-mode squeezed state.
Before providing details of our proposal to directly

prove the bosonic commutation relation, we briefly de-
scribe the single-photon-level operations involved. We
then devise a single-photon interferometer using the
wave-particle duality to interfere two subtraction processes
and show the commutation relation between subtraction
and addition processes. Heralded by the interference out-
come, we can also produce a highly nonclassical state.
Let us consider a photon-subtraction [1] scheme recently

realized [6,7]. A photon is subtracted from input state
jc i ¼ P1

n¼0 CðnÞjni by splitting out a single photon using

a lossless beam splitter of high transmittivity, t (low re-
flectivity r) and a photodetector. With use of the standard

form of a beam splitter operator B̂ðtÞ [8], we find the beam
splitter output for the input state jc i in mode a, as

B̂ðtÞjc ij0i ¼ X1
n¼0

CðnÞXn
k¼0

n
k

� �
1=2

rktn�kjn� kijki; (2)

assuming nothing (vacuum state j0i) has been injected into
the other input port of mode b. The binomial coefficient
has been denoted by

n
k

� �
:

With T � 1, if one particle is found at the output bout, the
conditional probability of having n� 1 particles at output
aout is approximated as follows:

Psubðn� 1Þ ¼ N s

n!

ðn� 1Þ!T
n�1P0ðnÞ � N snP0ðnÞ;

(3)

taking T ¼ t2 and P0ðnÞ ¼ jCðnÞj2. Throughout the Letter,
N with a subscript denotes a respective normalization
factor. The proportionality on n in Eq. (3) reflects the
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coefficient
ffiffiffi
n

p
which emerges when the annihilation op-

erator â is applied to a Fock state jni [9]. As far as the
photon number statistics is concerned, the subtraction
scheme can be understood by treating the photons as
conventional particles and assuming a beam splitter as a
device which randomly chooses incoming particles to
change their directions with the probability 1� T.

Recently, a very neat scheme to add a photon [2] has
been realized using a parametric downconverter which
produces twin photons to modes a and b and is described

by ŜðsÞ ¼ expð�sâyb̂y þ sb̂ âÞ with the coupling parame-
ter s [10]. For the input state jc i in mode a and the vacuum
in the ancilla mode b, the output state is

ŜðsÞjc ij0i ¼ X1
n¼0

CðnÞ
�nþ1

X1
k¼0

ð��Þk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ kÞ!

k!2

s
jnþ kijki;

(4)

where� ¼ coshs, � ¼ sinhs and � ¼ �=�. Once a photon
is detected in output mode b, we find that the state in
Eq. (4) brings about the conditional probability Paddðnþ
1Þ � N aðnþ 1ÞP0ðnÞ, assuming � � 1. Here, the factor

nþ 1 is the realization of
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
as the creation operator

ây acts on jni [9].
In [7], the authors compare two sequences of photon

addition and subtraction and show the quantum nature of
the operations through the photon number distribution and
the phase-space statistics. However, it fails to show the
exact commutation relation other than the difference be-
tween the two sequences. In the experiment [7] for a
thermal input field, it has been found that the mean photon
number after the sequence of photon subtraction then
addition (âyâ) is larger by one photon than that after the
sequence of photon addition then subtraction (âây). At the
first glance, this is odd because the commutation relation
(1) seems to advocate the other way round. However, the
mean values are obtained after the normalization of the
density operators to show only the statistical averages, thus
they cannot reveal the commutation relation directly. This
is why we need to carefully design a new setup for its direct
proof.

Direct proof of commutation relation.—The density op-
erator of a field obtained by adding a photon after subtract-
ing one is �̂1 ¼ N 1â

yâ�̂0â
yâ where �̂0 is the density

operator for the initial field. On the other hand, by sub-
tracting a photon after adding one the density operator
becomes �̂2 ¼ N 2ââ

y�̂0ââ
y. Once these two experi-

ments are separately performed, it is not possible to
show the commutation relation directly from the experi-
mental data. For example, the photon number distributions
will tell us about the difference between âyâ�̂0â

yâ and
âây�̂0ââ

y rather than ðâây � âyâÞ�̂0ðâây � âyâÞ. It is
then clear that we should have a coherent superposition
of two sequences of operations through their interference,
to directly show the commutation relation. This is an

interesting remark because the concept of interference is
associated to the wave nature.
Let us consider the setup in Fig. 1. The beam splitters,

BS1 and BS2, with the same high transmittivity subtract
photons from the input field. A parametric down-converter
produces twin photons into two different modes. A photon
counting at PD0 heralds that a photon has been added to the
input field which passed through the down-converter. The
two reflected fields at BS1 and BS2 interfere at the 50:50
beam splitter BS3 to erase information about their paths.
Had there not been BS3, one photon detected in mode b but
not in mode c indicates that one photon has been subtracted
before the photon addition process. On the contrary, if one
photon is detected in mode c, we know that a photon
subtraction has been performed after the photon addition.
However, as the photodetectors, PD1 and PD2, are placed
after BS3, by having one photon registered in either of the
photodetectors, there is noway to find out if the photon was
subtracted before or after the photon addition process.
Thus detecting one photon is to herald a superposition of
two possible sequences âyâ and âây.
A beam splitter is a unitary operator and its action is

described by the following input-output relation for two
modes b and c:

B̂ðtÞ b̂
ĉ

 !
in

B̂yðtÞ ¼ tb̂þ rĉ
tĉ� rb̂

 !
out

: (5)

For a 50:50 beam splitter like BS3, the reflectivity r ¼ 1ffiffi
2

p .

The two different signs of � in the right-hand side of
Eq. (5) ensure the unitarity of the beam splitter operator
and play a key role in the bunching of two photons for the
Hong-Ou-Mandel interferometer [11]. With use of Eq. (5),
we find that if a photon is detected at PD1 but not at PD2,

BS1 BS2

BS3mirror

Down-converter

pump stop

Pump
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PD1
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input output field
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b
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c
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FIG. 1 (color online). Experimental setup. BS1 and BS2 are
beam splitters of high transmittivity. A photon is added by a
parametric down-converter between BS1 and BS2. A 50:50
beam splitter (BS3) superposes the reflected fields from BS1
and BS2. The output field is selected, conditioned on registering
a photon at only one of the two photodetectors PD1 and PD2. a,
b, c and d label the field modes.
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the operation by the whole setup is âyâþ âây, assuming a
photon is added between BS1 and BS2. Note that the
overall operation is the constructive interference of two
operations both of which transform an initial state into
nonclassical ones. On the other hand, if a photon is de-
tected at PD2 instead of PD1, the operation is âây �
âyâ ¼ 1, which means that the conditional output field
should be identical to the input field. This is the direct proof
of the bosonic commutation relation.

We now show how our scheme works by following each
step carefully. A general pure input state can be written as
j�0i. Once the pure state case is clear, the extension to a
mixed state input is straightforward. We assume nothing is

injected to the unused input ports of BS1 and BS2. In the
following argument, normalization is not included for
simplicity. According to Ref. [9], the action of BS1 under

the condition tâ
yâ � 1,

B̂ abj�0; 0iab �
�
1þ r

t
âb̂y

�
j�0; 0iab: (6)

The subscripts a, b, etc., denote modes in Fig. 1. With� �
1 and � � 1, we approximate Ŝj00i � ð1� �âyd̂yÞj00i
again without normalization. We measure a photon at
photodetector PD0, then the conditioned state is described
by

dh1jŜad
�
1þ r

t
âb̂y

�
j�0; 0; 0iabd �

�
��ây � r

t
��ââyb̂y þ r

t
�b̂y

�
j�0; 0iab; (7)

where the unitary operation Ŝ â Ŝy ¼ �âþ �d̂y has also
been used. Passing through BS2 of the same high trans-
mittivity as BS1, the state of the field modes a, b and c
becomes

� �r

�
ð1þ âyâÞĉy þ

�
t�âây � �

t�

�
b̂y
�
j�0; 0; 0iabc:

(8)

As we impose a condition t� � �
t� � 1, which is well

satisfied for the proposed experimental scheme, the output
field after BS2 and BS3 is approximated to ��rðââyĉy þ
âyâb̂yÞj�0; 0; 0iabc. Now, by the final 50:50 beam splitter
BS3, the field becomes

�rffiffiffi
2

p ½ðâây � âyâÞb̂y � ðâây þ âyâÞĉy�j�0; 0; 0iabc; (9)

which shows that one photon detected in mode b by PD2
and none in mode c should result in a unit operation 1
while in mode c by PD2 (none in mode b) the operation is
âyâþ âây.

Experimental feasibility.—There are some details we
have to consider for experimental feasibility of our
scheme. One problem comes from the fact that there is
no photon-level detector available. Thus we have to replace
the photon number resolving detectors in our theory with
on-off type detectors realized by avalanche photodiodes,
which discern there being photons from no photons with
high efficiency. The ‘‘on’’ event is represented by 1�
j0ih0j and ‘‘off’’ by j0ih0j.

We exemplify the effect of the realistic experimental
condition for the coherent input state, j�i, which is at the
boundary between quantum and classical worlds. Then the
output state conditioned on the photodetection at the ava-
lanche photodiode PD2 but not at PD1 is found to be �
jt�i (In fact the resultant state is mixed but other terms are
negligible). In order to assess the closeness between the
input state j�0i and the conditional output state of density
operator �̂out, the fidelity defined as F ¼ h�0j�̂outj�0i is

utilized. Taking realistic experimental values of T ¼ 0:99

and s ¼ 0:1, we find that the fidelity F � e�ð1�tÞ2j�j2 . The
fidelity is as high as F > 99:99% for j�j2 & 2. Thus, the
unit operation (1) which shows the bosonic commutation
relation can be proven efficiently.
It is useful to represent a quantum state in phase space by

quasiprobability functions as they visualize the quantum
state and can be used to show its nonclassical nature. In
particular, we utilize the Wigner functionWð�Þ, where the
real and imaginary parts of � are two conjugate variables
(see [10] for its definition). It is well known that theWigner
function may show negative values reflecting the nonclass-
ical nature of a given state. Now, the Wigner function for
the output state conditioned on the photodetection only at
the avalanche photodiode PD1 (PD2) for the initial coher-
ent state of � ¼ 1, is shown in Fig. 2(a) [Fig. 2(b)]. We can
clearly see the negativity around the origin of the phase
space in (a) which is contrasted to the positive Gaussian
Wigner function in (b).
The inefficiency of avalanche photodetectors was not a

problem in separate photon addition and subtraction ex-
periments because it only lowers the success probability.
However, in our proposal, another important fact is to
make sure that one output port of BS3 is empty while the
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FIG. 2 (color online). Wigner function Wð�Þ for the output
state conditioned on photodetection only at PD1 (a) or only at
PD2 (b) when the initial state is a coherent state of amplitude
� ¼ 1. T ¼ 0:99 and � ¼ 1:005 (s ¼ 0:1).
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other registers a photon. If the detection efficiency is low,
only one of the detectors may click while the other is silent
even though there are photons at both modes b and c after
BS3. However, we stress that this ‘‘failure’’ probability is
very low regardless of the detection inefficiency. It is
straightforward to obtain the probability for both the
modes b and c having photon(s) before the final detection
as P bc¼Tr½�̂out1a�ð1�j0ih0jÞb�ð1�j0ih0jÞc�. Then, it
can be conditioned on the probability of the detection at
PD1, P b¼Tr½�̂out1a�ð1�j0ih0jÞb�1c�, so that the con-
ditional probabilities P bcjb ¼ P bc=P b (and P bcjc in the

same manner) can be obtained. These conditional proba-
bilities are only P bcjb�0:2% (P bcjb � 0:2%) andP bcjc �
2% (P bcjc � 1%) for T ¼ 0:99, s ¼ 0:1, with the initial

coherent state of amplitude � ¼ 1 (� ¼ 0:6). This means
that our scheme is robust against the detection inefficiency.
For example, suppose that the detection efficiency is 45%
for both PD1 and PD2 and we look at the case of photo-
detection only at PD2 to prove the commutation relation. A
simple analysis based on the aforementioned values im-
mediately leads to the conclusion that the degradation of
the fidelity is less than 1.1% (0.55%) for � ¼ 1 (� ¼ 0:6).

The conditionally prepared state in mode a can be
completely characterized by means of homodyne detec-
tion. This allows one to reconstruct its Wigner function
Wð�Þ in phase space. In an experiment involving homo-
dyne detection, a thermal state, which is a bosonic state in
thermal equilibrium at a given temperature [10] and can
also be implemented by phase and amplitude randomiza-
tion of a coherent field, may be handier to use as an input,
because it does not require precise phase control of the
local oscillator. Consider that the initial field is a thermal
field of mean photon number �n. Figures 3 show the Wigner
functions for the output field conditioned on photodetec-
tion at PD1 in (a) and PD2 in (b). While the Wigner
function in (b) shows a Gaussian profile as for the initial
thermal field, that in (a) shows a negative dip at the origin,
manifesting nonclassicality. The levels of homodyne de-
tection efficiency reached in current experiments guarantee
that these effects should be clearly visible in a realistic
situation [6,7]. The dark count rate of photodetectors could

generally be neglected in photon subtraction and addition
experiments [1,2,5–7].
Remarks.—We have devised a single-photon interfer-

ometer based on photon addition and subtraction tech-
niques, realized in numerous labs worldwide. Our
interferometer will enable the first direct test of the bosonic
commutation relation as it superposes two different se-
quences of operations. Heralded by the interference out-
come, we can also produce a nonclassical state which may
be very different from the initial state. The assessment of
experimental inefficiencies suggest that the scheme can be
readily implemented with high feasibility.
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FIG. 3 (color online). Wigner functions Wð�Þ for the output
field of mode a for photodetection only at PD1 (a) or only at PD2
(b). The average photon number of the initial thermal field is
�n ¼ 1. T ¼ 0:99 and � ¼ 1:005.
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