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Using microwave currents, we excite resonances of geometrically confined pinned domain walls,

detecting the resonance by the rectification of the microwave current. By applying magnetic fields, the

resonance frequency of the domain wall oscillator can be tuned over a wide range. Increasing the power

leads to a redshift due to the nonlinearity of the system. From this frequency shift, we directly deduce the

quantitative shape of the potential, so that a complete characterization of the pinning potential is obtained.
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Laterally confined magnetic domain walls exhibit a
range of novel physical effects and are also promising
candidates for applications in memory devices [1] as well
as in logic circuits [2].

To use domain walls in devices, the walls have to be
pinned controllably at well-defined pinning positions.
Examples of artificial pinning sites include notches [3–6]
and protrusions [7], both creating attractive potentials for
domain walls. Domain walls can be moved between differ-
ent pinning sites to implement, e.g., logic operations [2] or
storage [1]. Another application was proposed by He and
Zhang [8], who suggest to use a localized domain wall
oscillator as a tunable microwave source. But so far it is
unclear to what extent the frequency of such an oscillator
can be tuned, which is one of the key requirements for
applications.

For reliable operation of devices based on domain wall
motion or resonance, in addition to well-defined pinning
potentials, also sufficiently low critical current densities
and sufficiently fast switching are required. It was shown
that resonant excitations [9] as well as resonant pulse trains
[10] allow for a significantly lowered threshold current
density. To further understand and control domain wall
dynamics, the quantitative shape of the pinning potentials
has to be determined. In addition to engineered pinning
centers, pinning at defects intrinsic to the material or
caused by the processing is one of the key problems and
obstacles for device applications, and only quantitative
information about the pinning potential will lead to a
further understanding of the dynamics of such random
pinning processes. So an in-depth understanding of the
pinning potential landscape due to constrictions but, in
particular, due to intrinsic defects is a key requisite to
further development in the field of domain wall dynamics.

Depending on the type of the domain wall, the dynamic
behavior of pinned domain walls is determined by different
contributions of the wall spin structure. While in the case
of transverse walls the dynamic behavior is determined

mainly by the motion of the entire wall, for vortex walls,
the singularity in the center of a magnetic vortex, which
points out of the plane and is one of the smallest confined
magnetic structures present in domain walls, plays a key
role.
A force acting on such a vortex core will cause a move-

ment of the vortex core in the direction perpendicular to the
force [11,12]. Therefore, if excited by a continuous ac field
or current, the vortex core will carry out a gyrotropic mo-
tion around the potential minimum [13]. Depending on the
regime, the vortex core will follow either a circular orbit
[13] or a more complicated nonlinear orbit of higher order
[14] with characteristic eigenfrequencies. In the case of a
single pulse excitation, the vortex core will relax after-
wards into the potential minimum on a spiral trajectory.
Such a behavior lends itself to a description of the vortex

core as a quasiparticle, which oscillates in a potential
defined by the geometry of the structure; i.e., the dynamic
behavior of the vortex domain wall is described approxi-
mately by the motion of the vortex core. The masses of the
domain wall quasiparticles have been determined in
Refs. [9,15], and the trajectory of the quasiparticle can be
described using Thiele’s equation [16]. Thiele’s equation
treats the spin configuration as rigid, which is acceptable in
many cases, as the equations are not very sensitive to small
deviations of the spin distribution. In Fig. 1(c), we present
four simulated snapshots of the vortex core motion when a
vortex core in a pinned vortex wall (by an artificial notch)
is excited resonantly. It can be seen that the vortex core
moves on an elliptical trajectory as predicted by the model
[16].
Experimentally, both vortex and transverse walls have

been observed in nanowires, and the domain wall types
have been determined for different geometries [17]. For
both domain wall types [3], the depth [4,5,7], the width [6],
and the location [18] of the pinning potential have been
previously determined. Using a resonant excitation of a
vortex wall, the trajectory of the vortex core [9,19], as well
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as the core polarity [19], has been determined, but so far
the key information, namely, the quantitative determina-
tion of the shape of the pinning potential, has not been
achieved.

In this Letter, we investigate the potential landscape
around a pinning site by analyzing current-induced domain
wall excitations in the frequency range from 100 MHz up
to 2 GHz. Using a homodyne detection scheme [9], we
measure the resonance frequency of the domain walls,
which corresponds to the potential well curvature. By
applying external fields, we can tune the well curvature
and thus the resonance frequency over a wide range from
250 to 500 MHz. In addition to using a field, we find that
we can also tune the resonance frequency by varying the
power, which reveals the nonlinearity of the domain wall
oscillator. Using a one-dimensional anharmonic oscillator
model, the power dependence of the resonance frequency
is explained, and from these data we are finally able to
quantitatively determine the absolute shape of the potential
well around a pinning site.

For the experiments we use 25 nm thick and 200 nm
wide Permalloy ring structures with 2 �m outer diameter
and 10–30 nm wide constrictions [9]. On top of the ring
structure, nonmagnetic Au contacts are patterned, and
a scanning micrograph image of the device is shown in
Fig. 1(a).

Domain walls in such structures are head-to-head 180�
walls with a vortex or a transverse spin structure [17,20],
and by applying an in-plane magnetic field they can easily
be generated and positioned at any desired position in the
ring [6].

The domain wall is positioned along a direction of 80�,
between contacts 2 and 3 in Fig. 1(a). From the geometry
we expect a vortex wall [Fig. 1(b)] [17], as has been
confirmed by micromagnetic simulations with the
OOMMF code [21] and the LLG micromagnetic simulator

software [22] (parameters: K ¼ 0,MS ¼ 800� 103 A=m,
A ¼ 13� 10�12 J=m, 5 nm cell size). The domain wall
type has also been verified by magnetoresistance measure-

ments using a current of 5 �A injected between contacts 2
and 3, as described in [3].
The resonance frequency is determined using the homo-

dyne detection scheme detailed in [9]: To measure the dc
component generated by the rectifying action of the do-
main wall, we use a lock-in detection. The microwave
generator is modulated with a 3 kHz square wave, to which
the lock-in amplifier is synchronized. The microwaves are
injected into contact 2 of the sample using a bias tee. The
dc voltage signal is measured between the dc port of the
bias tee and contact 3. All measurements are carried out at
4 K in a flow cryostat with high frequency contacts.
Far from a notch, the finite propagation field of the

domain wall is caused by an intrinsic pinning site, due to
the edge roughness and other irregularities, such as grain
boundaries. For an intrinsic pinning site, we can expect a
symmetric potential, as shown in Fig. 2(a), with the poten-
tial eventually leveling off, far away from the pinning site.
As discussed below, we are interested in such a symmetric
pinning potential for a vortex wall, which would not be
found in the case for the pinning at a notch which is
intrinsically asymmetric for a vortex wall pinned on one
side of the notch [3,9,18]. For this reason, we have chosen a
strong intrinsic pinning site for our experiments, which
provides the necessary symmetric pinning potential.
The pinning potential is described by global parameters,

such as its maximum depth as measured from the depin-
ning field [4,5] and its absolute width as determined in
Ref. [6]. To completely characterize the potential land-
scape, though, we need to determine the local structure
of the potential. In particular, oscillation phenomena are a
sensitive probe for this, since they depend on the local
shape of the potential landscape, such as the curvature,
which determines the resonance frequency.
To experimentally ascertain the resonance frequency,

the homodyne detection method presented in Ref. [9] is
used and allows for probing domain wall resonances for
variable external magnetic fields and microwave power

(a) (b)

FIG. 2 (color online). (a) Schematic potential of a pinned
domain wall (red solid line); 0 marks the center of the pinning
potential. If an external magnetic field B is applied, the potential
is distorted (dotted blue line) due to the Zeeman energy con-
tribution. This distortion could then be used to determine the
undistorted potential (red solid line). (b) Measured resonance
frequency of the vortex wall for different applied external fields.
The curve exhibits a largely symmetric behavior, indicating a
symmetric potential. For large fields, the resonance frequency
decreases with increasing fields.

FIG. 1 (color online). (a) Scanning electron micrograph of the
device with numbered contacts. Micromagnetic simulation of a
vortex wall far from the constriction (b). The two stars indicate
the topological edge defects, and the resonant mode corresponds
to the vortex core moving on an elliptical trajectory along the
line connecting the two stars. The color circle indicates the
direction of the magnetization. (c) Four frames of a micro-
magnetic simulation of the vortex core trajectory. The arrows
indicate the direction of the core motion. The duration of one full
cycle is 2.5 ns.
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levels. Furthermore, the homodyne detection scheme al-
lows for a very precise determination of the resonance
frequency compared to the depinning field method, as
shown in Fig. 2(b) of Ref. [9].

By changing the injected microwave power level, we are
able to change the driving force of the domain wall oscil-
lator and therefore the amplitude of the oscillation. If the
potential was perfectly harmonic, we would expect the
resonance frequency to be independent of the power level
applied. Frequency variations therefore provide us with a
very sensitive method to directly measure the shape and
any anharmonic part of the potential.

The curvature of the pinning potential can be controlled
by an external magnetic field. Depending on the shape of
the potential, the frequency shows a characteristic depen-
dence on the magnetic field. For the symmetric potential
shown in Fig. 2(a), the more the field is increased, the
shallower the potential becomes. As the residual depth
reaches a few times kBT, we expect the domain wall to
be thermally excited and to be pulled over the edge of the
potential well, leading to a depinning. For a domain wall
we would therefore expect the frequency to decrease for
large fields, until the domain wall is depinned, at which
point the dc signal disappears. The application of an ex-
ternal magnetic field also allows us to study the symmetry
of the pinning potential, as for a symmetric potential the
dependence on the field polarity will be symmetric as well.

Figure 2(b) shows the peak frequency of the rectified
signal as a function of the applied external field. As we
would expect, the frequency decreases with increasing
applied external field. For field amplitudes larger than
about 8 mT, the domain wall is depinned and no dc signal
is measured, indicating that the dc signal indeed stems
from the rectifying action of the domain wall. We see
that, by applying a field, the domain wall oscillator can
be tuned over a wide range from 250 to 550 MHz, which
bodes well for using domain walls as large-range tunable
oscillators.

Next we turn to the determination of the shape of the
potential well, which can be determined quantitatively
from the power dependence of the resonance frequency:
For the potential shown as an example in Fig. 3(a), we
obtain the period T of the oscillation, with U the potential,
m the quasiparticle mass, and x the space coordinate, as a
function of the energy E stored in the system, the deriva-
tion follows the well-known textbook [23] Sec. 12:

TðEÞ ¼ ffiffiffiffiffiffiffi

2m
p Z E

0

dx2
dU

dU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�U
p þ ffiffiffiffiffiffiffi

2m
p Z 0

E

dx1
dU

dU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�U
p :

(1)

Integration over the energy E and rearranging the terms
gives us the integral equation (2). We can now directly
calculate the difference between two positions x1;2 shown
in Fig. 3(a) for any given potential by the integral given in
Eq. (2):

x2ðUÞ � x1ðUÞ ¼ 1

�
ffiffiffiffiffiffiffi

2m
p

Z U

0
dE

TðEÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U� E
p : (2)

If we now assume a symmetric potential, the equation
simplifies to Eq. (3):

xðUÞ ¼ 1

2�
ffiffiffiffiffiffiffi

2m
p

Z U

0
dE

TðEÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U� E
p : (3)

From this equation we can directly determine the shape of
any symmetric potential by numerical integration if the
resonance frequency as a function of the energy is known.
Figure 3(b) shows the oscillation period (1=fresonance) as

a function of the microwave power, i.e., the energy in the
system. There is a clear dependence of the resonance
frequency on the power, showing that the pinned domain
wall exhibits a nonlinear behavior. We note that the quasi-
particle model that we use works for the excitation levels
that we employ, but for very high excitations the distortions
of the domain wall spin structure are expected to become
so large that the simple description will not suffice
anymore.
Since the energy of an oscillator is proportional to the

square of the driving force, the power yields the energy E
in the system. The driving force is due to spin torque,
which is proportional to the current; therefore, the energy
is proportional to the applied power. The energy depen-
dence is shown in Fig. 3(b) (large blue disks). To determine
xðUÞ through Eq. (3), a third-order polynomial interpola-
tion has been fitted to the data using the MATHEMATICA

software packages (small blue dots).
Integrating Eq. (3) over the interpolated data shown in

Fig. 3(b), we obtain the shape of the potential of the
domain wall oscillator as shown in Fig. 4. The blue dots
are calculated from the measured oscillator periods, and
the red line indicates the parabolic part of the potential
well. From the sketch of the potential in Fig. 2(a), one

(a) (b)

FIG. 3 (color online). (a) Schematic view of a pinning poten-
tial. For any given potential the characteristic frequencies can be
computed using Eq. (1). The converse is not true; for a given U,
only x2ðUÞ � x1ðUÞ can be obtained, which means that a sym-
metric potential is necessary to determine the local potential
curvature from the power dependence of the resonance fre-
quency. (b) Period of the domain wall oscillator for different
energies. The large blue dots are the measured values (error bars
smaller than the symbols) and the small blue dots the third-order
interpolation used for the numerical integration. The inset shows
the measured resonance frequencies (inverse of the period) as a
function of the injected power level.
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expects that the potential flattens off far away from the
minimum at the origin. And as expected, we find experi-
mentally that the measured potential (blue dots) flattens far
away from the origin, i.e., is lower than the harmonic po-
tential (red solid line). By fitting an equation of the form
x2 þ ax4 to the potential, we obtain a fourth-order correc-
tion of a ¼ 8:6� 10�19. This anharmonic contribution to
the potential has been visualized in the inset of Fig. 4.

To absolutely calibrate the potential shown in Fig. 4, we
use the methods described in Refs. [5,6] to determine the
absolute depth and width of the potential. The total depth is
obtained from the depinning field, 8 mT for a vortex wall
correspond to about 0:1� 103 J=m3. The total width of the
potential well has been determined to be about 1400 nm
according to the method explained in [6]. Using these
values, the quantitative shape of the potential shown in
Fig. 4 is ascertained, which is a complete characterization
of the pinning potential.

In conclusion, we have investigated the pinning poten-
tial of a vortex-type domain wall using a homodyne detec-
tion scheme. The resonance frequency of the pinned
domain wall could be tuned over a wide range by applying
an external magnetic field, and the symmetry of the fre-
quency shift with respect to the field shows that the poten-
tial is largely symmetric.

The nonlinearity of the system is reflected in the power
dependence of the resonance frequency. Starting from
several resonance spectra for different excitation ampli-
tudes, the potential could be determined directly from the
power dependence of the resonance frequency.

Applying an external magnetic field, the potential is
modified by an additional Zeeman-like magnetostatic en-
ergy term. As the value of this Zeeman shift is known, we
can completely characterize the undistorted potential for

zero field from the power dependence under an external
field. So as a next step this method opens up a way to
completely characterize even asymmetric potentials. Since
a complete characterization of any potential well is thus
possible, the information can be used to completely tailor
pinning potentials to a desired shape.
This work was supported by the Deutsche Forschungs-

gemeinschaft (SFB 513) and the Landesstiftung Baden
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FIG. 4 (color online). Plot of the experimentally determined
domain wall potential. The blue dots (error bars are smaller than
the symbols) are calculated from the measured oscillation peri-
ods, and the solid red line indicates the harmonic (parabolic) part
of the potential well. The inset shows the interpolated anhar-
monic part of the potential, which is the difference between the
measured potential and the harmonic part. As expected, the
domain wall potential flattens far away from the origin, indicat-
ing the anharmonic contribution to the potential.
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