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Graphene bilayers can condense into a state with spontaneous interlayer phase coherence that supports

dissipationless counterflow supercurrents. Here, we address the influence of disorder on the graphene

bilayer mean field and Kosterlitz-Thouless critical temperatures and report on a simple criteria for the

survival of pair condensation.
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Introduction.—Superconductivity is due to electron pair
condensation and is a spectacular and useful condensed
matter phenomena. Unfortunately, its occurrence has so far
been limited to relatively low temperatures, even in the
case of high-Tc materials. The effective attractive interac-
tion between two electrons that is imperative for super-
conductivity always relies on some artifice that diminishes
the role of the bare strongly repulsive Coulomb interaction.
It has recently been suggested that higher temperature
superfluid behavior might be realized in graphene bilayers
when conditions are favorable for Coulomb-driven
electron-hole pair formation [1,2]. If realized, these sys-
tems will have spontaneous interlayer phase coherence and
support a type of superflow in which opposing currents
flow in opposite layers. Interesting novel transport phe-
nomena [3,4] are expected in counterflow superfluids in
which the two layers are contacted separately. One obstacle
which stands in the way of realizing this state is the
inevitable presence of unintended disorder. In this Letter,
we derive a simple criterion for the survival of spontaneous
interlayer coherence and conterflow superfluidity in gra-
phene bilayer systems which is informed by current under-
standing [5] of the disorder present in these truly atomic [6]
two-dimensional electron systems.

The system we consider [1,2] consists of two parallel
graphene layers embedded in a dielectric. The thin barrier
separating the layers suppresses interlayer tunneling [7].
External gates can shift the Dirac cones and transfer charge
between the layers. Spontaneous interlayer coherence is
most likely to occur [1,2] when the energetic Dirac-cone
shifts are equal and opposite, so there is perfect nesting
between the electron Fermi surface of the high-density
layer and the hole Fermi surface of the low-density layer,
i.e., when the bilayer is neutral. Nearly perfect nesting in
neutral bilayers is guaranteed by the nearly perfect
particle-hole symmetry of graphene’s �-bands. At suffi-
ciently low temperatures, the system is driven to conden-
sation by the Cooper instability. Graphene is the ideal
system for bilayer electron-hole condensation [8] because
its bands are particle-hole symmetric, because the lack of a
gap assists charge transfer, and because its linear disper-
sion and truly 2D character increase electron-hole pairing

energy scales at a given carrier density. The stiffness of the
interlayer phase in the condensed state facilitates counter-
flow superfluidity and in separately contacted bilayers
supports novel transport phenomena which are still rela-
tively unexplored [3,4].
In this work, we study the influence of disorder on pair-

condensation in graphene bilayers. We find that disorder
suppresses both the mean-field-theory critical temperature
Tc and the KT temperature TKT, but that spontaneous
coherence survives when

n2i d
2� & n &

1

d2�
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Here, ni is the density of the Coulomb scatterers that
dominate [5,9] the disorder present in graphene sheets on
dielectric substrates, n ¼ k2F=� is the external electric field
induced carrier density in each layer, kF is the Fermi
momentum, and d is the separation between graphene
layers. The right inequality in Eq. (1) expresses the require-
ment that interlayer interactions be comparable to intra-
layer interactions discussed in earlier work [1] while the
left inequality places a limit on the allowable disorder
strength. A window in carrier density for spontaneous
coherence exists provided that nid

2� & 1. Since ni is
typically in the range between 1011 cm�2 and 1012 cm�2

for graphene on SiO2 substrates, layer separations less than
about 10 nm are required for spontaneous interlayer phase
coherence. In the body of this Letter, we explain the
dependence of Tc and TKT on the strength of disorder
and derive condition (1).
Mean-field theory with disorder.—In order to focus on

the role of disorder in spontaneous coherence, we simplify
the mean-field theory by neglecting the inessential role of
the full valence band of the high-density layer and the
empty conduction band of the low-density layer.
Furthermore, we incorporate the effects of the intralayer
Coulomb interaction only through an implicitly renormal-
ized Fermi energy �F. In the same spirit, the momentum
dependence of the interlayer interaction is replaced by an
energy cutoff v=d (@ ¼ 1) where v is the velocity of the
Dirac quasiparticles. The influence of disorder is incorpo-
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rated here using the self-consistent Born approximation
(SCBA).

The basic building block in this analysis is the retarded
Green function matrix Gr

��0 which satisfies the Dyson

equation

ð!�ð0Þ � �k�
z � ��x � �ÞGr ¼ I: (2)

In Eq. (2), �k ¼ vFðk� kFÞ is the band energy, and the
Pauli matrices act on layer labels ��0. The disorder and
pairing self energies are, respectively,

���0 ðk; !Þ ¼ ni
X
p

jSkpj2RefU?
k-p�Uk-p�0 gGr

��0 ðp; !Þ

(3)

and

� ¼ �g
X
k

jSkpj2hcyk1ck2i (4)

where Uq� is the disorder potential in layer � and Skp ¼
ð1þ eið�k��pÞÞ=2 is graphene’s chiral form factor. The
overbar in Eq. (4) denotes the average over disorder and
g stands for the interlayer interaction coupling constant.
Since elastic impurity scattering occurs in the vicinity of
the Fermi surface, we can assume that U ¼ Uð�Þ, i.e., that
the scattering rate depends only on the angle between the
incoming and outgoing momenta. In a similar spirit, we
also approximate the density of states by its value at the
Fermi energy to obtain

Grðk; !Þ ¼ ~!�ð0Þ þ �k�
z þ ~��x

~!2 � �2k � ~�2
(5)

where
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�
u
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u ¼ ~!=~�, and
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2
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We have assumed here that the two layers are identical and
set �11 ¼ �22 ¼ �S (S ¼ same layer) and �12 ¼ �21 ¼ �D
(D ¼ different layer).

We now estimate �S and �D. The measured transport
properties of graphene layers strongly suggest that disorder
is dominated by Coulomb scatterers [5,9] near the inter-
faces between the dielectric and the graphene sheets. We
therefore expect interlayer disorder potential correlations
to play an inessential role and set �D ! 1 [10]. (Including
a finite value of �D would not complicate our analysis in
any way.) After accounting for the difference between
transport and scattering lifetimes �tr=�S � 2 [12], we fol-
low Ref. [5] in estimating that

�F�S � 10
n

ni
: (8)

We use this equation below to express �S in terms of ni.
Coherence criterion.—There is a complete analogy be-

tween the Green function (5) and that of an electron in a
superconductor with magnetic impurities once the pair-
breaking parameter is identified with � ¼ 1=2�s þ
1=2�D. The various ways in which disorder influences
coherence in bilayers may therefore be understood by
borrowing results from Abrikosov-Gorkov theory
[13,14]. In the condensed state, the density of states
(DOS) of a disordered bilayer graphene is �ð!Þ ¼ �0

� Imu

where � ¼ �=�ðTÞ and �0 ¼ kF=�v is the DOS of the
normal system. Disorder smooths the square root singular-
ity of a clean system. Furthermore, it reduces the energy

gap to �ðTÞ½1� �2=3�3=2 for � < 1. For � > 1, the spec-
trum is gapless. The mean-field critical temperature Tc in
the presence of disorder is given by [13]

log

�
Tc0

Tc

�
¼ H ð	Þ (9)

where H ð	Þ ¼ c ð12 þ 	
�Þ � c ð12Þ with c being the di-

Gamma function, 	 ¼ �=2Tc, and Tc0 is the mean-field
critical temperature of the clean system. For weak disorder
Tc ¼ Tc0 � ��=4; i.e., the critical temperature decreases
linearly with ni. For strong disorder, T2

c ¼ 6ð�=�Þ2 �
logð�Tc0=2��Þ where � ¼ 1:76. When � > 0:8Tc0, the
spectrum becomes gapless; however, interlayer phase co-
herence continues to exist. Eventually, disorder destroys
superfluidity altogether when � * 0:88Tc0. This last result
of Abrikosov-Gorkov theory [13] can be transformed into a
more useful form by noting that for graphene bilayers in
the strongly interacting regime (kB ¼ 1)

Tc0 � 0:1�F
kFd

: (10)

Combining Eq. (8) and (10) yields the left inequality in (1).
It is difficult to estimate Tc0 in the weakly interacting

regime when kFd � 1. In that regime screening and other
induced interaction effects are expected to significantly
reduce the critical temperature. Precise estimates lie be-
yond the scope of mean-field theory and present an inter-
esting theoretical challenge. Nevertheless, using Eqs. (8)
and (9), we can rewrite the condition for the existence of
interlayer coherence in terms of the physical measurable
parameters:

n *

�
vni
10Tc

�
2
e�2H ð	Þ: (11)

For weak disorder, 	 � 1, condition (11) is equivalent to
n * ð vni10Tc

Þ2e��	. In the opposite limit (	 � 1), the system

will condense for n * ðvni22�Þ2e��2=12	2
.

Kosterlitz-Thouless temperature.—In two dimensions,
superfluidity is destroyed at the KT temperature by
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vortex-antivortex proliferation. To estimate TKT, we use
the Kosterlitz-Thouless equation 
sðTKTÞ ¼ ð2=�ÞTKT

with 
sðTÞ in the presence of disorder calculated from
Abrikosov-Gorkov theory. The phase stiffness is deter-
mined from the counterflow current jD generated by a
uniform gradient of the relative phase between the two
layers and from the relation 2
sA ¼ jDð�Þ � jDð� ¼ 0Þ.
The phase gradient 2A is obtained by perturbing the two
layers with a pair of constant vector potentials that are
equal in magnitude but have opposite signs. The subtrac-
tion of jDð� ¼ 0Þ in the last relation is required [1] by a
pathology of the Dirac model which implies that jD does
not vanish, as required by gauge invariance, in the normal
(� ¼ 0) state. We find that


sðTÞ ¼ 
ð0Þ
s � v2

4

X
k

Z d�

�
nFð�ÞImTr½Grðk; !Þ�2

¼ 
ð0Þ
s

�
1þ

Z
d!

@nF
@!

Z
d�F ð!; �;�; �Þ

�
; (12)

where 
sð0Þ ¼ �F=4� is the zero temperature phase stiff-
ness of a clean system [1] and

F ð!; �;�; �Þ ¼ � 1

�
Im

Z !

�1
d!0 ~!02 þ �2 þ ~�2

½ ~!02 � �2 � ~�2�2 :
(13)

It is essential that the integration over !0 in Eq. (12)
precedes the integration over �. Vertex corrections to

sðTÞ vanish when the disorder potential U ¼ Uð�Þ is
taken to be independent of the magnitudes of the incoming
and outgoing momenta.

In the clean limit, F is a sum of two delta functions

centered at ! ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
. The phase stiffness is then


ðcÞ
s ðTÞ ¼ 
ð0Þ

s þ v2

4

Z
d!

@nF
@!

�ð!Þ: (14)

The second term in (14) captures the reduction in 
s at
finite temperature due to the thermal excitation of quasi-
particles. It can be understood as follows. A uniform phase
gradient (induced here by a constant vector potential)
generates a counterflow current in the superfluid. One
contribution to the current

P
kvnFð�k þ vAÞ originates

from the change in the occupation of the quasiparticles
due to the change of the energy dispersion. To linear order

in A the last expression becomes v2

4

P
k@�knF2A from

which the second term in expression (14) readily follows.
A similar expression holds for the phase stiffness of a BCS
superconductor, but with two differences. First, the veloc-
ity of a particle in a parabolic band is energy dependent and
must be left under the integral. Second, the zero tempera-
ture phase stiffness naturally arises in a parabolic band due
to the change in the velocity to vþA=m with m being the
effective mass of the particle whereas in the graphene

spontaneous-coherence case, it is accumulated at the
Dirac-model’s cutoff wave vector, and conveniently cap-
tured [1] by subtracting jDð� ¼ 0Þ.
The influence of disorder on 
sðTÞ follows mainly from

the finite lifetime of definite-momentum quasiparticles.
The impurities reduce the energy gap, thus reducing the
energy gain due to pair condensation and correspond-
ingly its sensitivity to phase gradients. The reduction of
the KT temperature due to disorder is readily obtained
from Eq. (12) by setting the temperature to TKT and
using the relation 
sðTKTÞ=TKT ¼ 2=�. The pairing poten-
tial �ðTKTÞ must be calculated self consistently using
Eqs. (4) and (6).
Figure 1 shows the reduction of the KT critical tempera-

ture of counterflow superfluids due to disorder. In this
figure, we plot the dependence of TKT on the Fermi energy
for various strengths of disorder. All energies are scaled
with Tc0. The strength of disorder is parameterized by
1=2�STc0 ¼ �=Tc0 (�nikFd=n in the strongly interacting
limit). In the weakly interacting regime, �F=Tc0 � 1 and
the KT temperature is of order of Tc. The effect of disorder
on TKT can then be inferred from its effect on Tc. In that
regime, �ðTKTÞ is small; hence, the disorder will signifi-
cantly reduce TKT. As the interaction increases, so does
Tc0; however, the ratio TKT=Tc0 decreases; hence, �ðTKTÞ
is relatively large. Thus, in the strongly interacting regime
the effect of disorder on the KT temperature is relatively
weak.
Discussion.—Since the pioneering work of Abrikosov,

Gorkov, and Anderson, it has been understood that both the
critical temperature and the order parameter of s-wave
superconductors are unaffected by a sufficiently low con-
centration of nonmagnetic impurities [15]. This result,
known as Anderson’s theorem [16], asserts that even in
the presence of (nonmagnetic) impurities, two states re-
lated to one another by time reversal symmetry will pair
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FIG. 1 (color online). KT temperature vs disorder strength.
Disorder is parameterized by 	 ¼ 1=2�STc0 ¼ �=Tc0. The solid
line in this figure corresponds to the clean system and the broken
lines correspond to (top to bottom) 	 ¼ 0:1, 0.5, 0.8. In graphene
bilayers, �F=Tc0 � 10kFd in the strongly interacting regime.
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and condense. On the other hand, as experimentally ob-
served [17] and theoretically explained by Abrikosov-
Gorkov theory, the values of Tc and � are suppressed by
magnetic impurities that act to reduce the binding energy
of Cooper pairs. Later work demonstrated that Abrikosov-
Gorkov theory applies to other circumstances in which
some perturbation breaks time reversal symmetry, for ex-
ample, thin superconducting films subjected to a parallel
magnetic field [18,19] or superconductors with an ex-
change field in the presence of strong spin-orbit inter-
actions [20]. In this work, we extended the range of appli-
cability of Abrikosov-Gorkov theory to dirty graphene
bilayers [21].

The analogy between the effects of disorder on super-
conductivity in metals and on counterflow superfluidity in
bilayer systems is evident if time reversal symmetry in the
former is replaced by particle-hole symmetry in the latter.
Kramer’s degeneracy in a nonmagnetic superconductor
translates to particle-hole symmetry in the spectrum of
the bilayer system. Indeed, if we consider a fictitious
scenario in which the disorder potentials of the two layers
are perfectly anticorrelated, i.e., U1ðrÞ ¼ �U2ðrÞ, then
particle-hole symmetry is preserved, �s ¼ ��D, the pair-
breaking parameter 	 vanishes, and both Tc and � retain
their clean system values. Generic disorder potentials
break particle-hole symmetry and therefore provide a
particle-hole pair-breaking mechanism. The influence of
disorder on the critical temperature is determined by the
value of 	 ¼ �=2Tc. Disorder will have a negligible effect
on Tc as long as 	 � 1 reinforcing the plausibility of
condensation in the strongly interacting regime.

In this work, we neglected the fully occupied valence
band and empty conduction band. Accounting for these
energy bands will increase interlayer coherence and dimin-
ish the influence of disorder on the critical temperatures.
However, we expect these bands to have significant ef-
fect only in the regime of very strong interactions when
kFd � 1.

Ideas similar to the ones used here may be applied to
study disorder effects on exciton condensation in quantum
Hall bilayers. In current experiments [22], 1=2�sTc is of
order of unity suggesting that incorporating disorder is
imperative for a correct estimate of the mean-field critical
temperature and of TKT. It is also interesting to consider the
influence of magnetic impurities on a bilayer graphene
system. Because of the spin and valley degeneracy of the
graphene sheets, the exciton pairing is SU(4) symmetric.
Put differently, four identical superfluids coexist in the
system. A scattering event by a magnetic impurity will
thus scatter an exciton from one superfluid to another.

In summary, interlayer coherence is most likely to occur
in the strongly interacting regime kFd < 1. In this work,
we showed that disorder destroys pair condensation unless
kFd > �nid

2. Furthermore, we numerically found the re-
duction in TKT due to disorder.
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