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We study theoretically the plasmon scattering at the intersection of two metallic carbon nanotubes. We

demonstrate that, for a small angle of crossing � � 1, the transmission coefficient is an oscillatory

function of �=�, where � is the interaction parameter of the Luttinger liquid in an individual nanotube. We

calculate the tunnel density of states �ð!; xÞ as a function of energy ! and distance x from the

intersection. In contrast with a single nanotube, we find that, in the geometry of crossed nanotubes,

conventional ‘‘rapid’’ oscillations in �ð!; xÞ due to the plasmon scattering acquire an aperiodic ‘‘slow-

breathing’’ envelope which has �=� nodes.
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Introduction.—By now, observation of Luttinger liquid
in 1D systems has been reported for single-walled carbon
nanotubes [1–6] and GaAs-based semiconductor wires [7].
Conclusions about Luttinger liquid behavior have been
drawn from analysis of the data, which can be divided
into two groups: (i) power-law, / ðmaxfV; TgÞ�, behavior
of tunnel or source-drain conductance [1–6], where pa-
rameter� is the measure of deviation from the Fermi liquid
behavior, and (ii) momentum-resolved tunneling in a par-
allel magnetic field [7].

On the conceptual level, the difference between
techniques (i) and (ii) is that (i) probes a single-point
Green function Gðx; x;!Þ, while (ii), by mappingR
dx

R
dx0Gðx; x0; !Þ exp½�iqBðx� x0Þ�, with qB propor-

tional to applied field, yields information about a two-point
Green function and thus is more informative.

With regard to quantitative determination of the
Luttinger liquid parameter g, which is related to � as [8]
� ¼ ðg�1 þ g� 2Þ=8, it is desirable to identify an effect,
which would depend on g stronger than a power law. An
example of such an effect was given by Ussishkin and
Glazman in Ref. [9], where, due to electron backscattering,
g appears in the argument of sine; this sine describes the
amplitude modulation of the probe-induced Friedel oscil-
lations [10], / cosð2kFxÞ in the local density of states; kF is
the Fermi momentum.

In the present Letter, we demonstrate that the geometry
of the crossed nanotubes (see Fig. 1) offers a qualitatively
new manifestation of the Luttinger liquid behavior. In
particular, the oscillatory dependence on g, similar to
that in Ref. [9], emerges in the geometry of crossed nano-
tubes even without electron backscattering [5,11–13].
More precisely, we show that, in this geometry, the enve-
lope, ‘‘breathing’’ with g, modulates not cosð2kFxÞ oscil-
lations but much slower oscillations resulting from the
plasmon backscattering.

There is an important difference between scattering of
plasmons and electrons: For an obstacle bigger than k�1

F ,
electron scattering is exponentially suppressed, while plas-
mon scattering is efficient as long as the size of the obstacle

does not exceed the plasmon wavelength. This scattering
gives rise to the oscillations of the local density of states
��ð!; xÞ / cosð2!x=vFÞ, where vF is the Fermi velocity.
It is these oscillations that acquire a breathing envelope in
the geometry of crossed nanotubes (Fig. 2). Our main
finding is that, with regard to this modulation, making
the crossing angle � small effectively enhances the
Luttinger liquid parameter. To describe this enhancement
quantitatively, we first consider an auxiliary problem of
plasmon scattering at the intersection and later utilize it for
the calculation of ��ð!; xÞ.
Plasmon scattering at the intersection.—Assume that d

is the minimal distance between the nanotubes. Even in the
absence of electron tunneling, a plasmon propagating to-
wards x ¼ 0 in nanotube 1 can (i) pass x ¼ 0 (transmis-
sion), (ii) excite a plasmon in nanotube 2, which
propagates away from the intersection x ¼ 0 either to the
left or to the right (deflection), and (iii) get reflected.
Incorporating the plasmon scattering into the formalism
of the Luttinger liquid gives rise to the breathing envelope
in Fig. 2. The underlying reason is that the interaction
between the tubes strengthens towards intersection [14].
This leads to the x-dependent splitting of velocities in each
tube. The resulting x-dependent phase accumulation near
the intersection translates into nontrivial dependence of
��ð!; xÞ. Moreover, the phase accumulation increases rap-
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FIG. 1 (color online). Intersecting nanotubes, separated by a
distance d; the angle of intersection is �. Directions of incident,
reflected r, transmitted t, and deflected dL and dR plasmon
waves are shown with solid red arrows. Dashed arrows illustrate
two contributions to the reflected wave.
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idly with decreasing angle �, thus simulating the enhance-
ment of the Luttinger parameter.

Collective modes of intersecting nanotubes.—As a result

of long-range interaction e2
R

dxdx0
jx�x0j

@uðxÞ
@x

@uðx0Þ
@x0 , where uðxÞ

is the displacement of the electron position from the equi-
librium, the plasmon spectrum of an individual tube is

!ðqÞ ¼ qsðqÞ with velocity [8] s ¼ vF½1þ � lnðqrÞ�1=2.
Here r is the nanotube radius, and � ¼ 8e2=ð�@vFÞ is the
interaction constant [8]. Following Ref. [8], we neglect the
relative change of lnðqrÞ. At a given frequency !, dis-

placement uðxÞ is the eigenmode D̂fuðxÞg ¼ ð!2=v2
FÞuðxÞ

of the operator

D̂ffg ¼ � @2

@x2
fðxÞ � �

@2

@x2

Z 1

�1
dy

jx� yj fðyÞ: (1)

For two crossed nanotubes, the eigenmodes are described
by the system of two coupled equations

ð!2=v2
FÞu1;2ðxÞ ¼ D̂fu1;2ðxÞg þ F̂fu2;1ðxÞg; (2)

F̂ffg ¼ ��
@

@y

Z 1

�1
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ x2 þ y2 � 2xy cos�
p @fðxÞ

@x
:

(3)

The operator F̂ has a meaning of longitudinal force created
by the density fluctuation @u1ðxÞ=@x in nanotube 1, at point
y of nanotube 2. The scattering problem corresponds to the
solution of Eqs. (2) which has the following asymptotes at
large x and y:

u1ðxÞjx!�1 ¼ eikx þ re�ikx; u1ðxÞjx!1 ¼ teikx;

u2ðyÞjy!�1 ¼ dLe
�iky; u2ðyÞjy!1 ¼ dRe

iky:
(4)

Born approximation.—For small �, the elements of scat-
tering matrix can be found in the Born approximation in

momentum space. To first order in �, only dR and dL are
nonzero. They are given by matrix elements of the operator

F̂ [Eq. (3)], namely, dRðkÞ ¼ ði=2kÞF̂k;k and dLðkÞ ¼
�ði=2kÞF̂�k;k. The analytical expression for F̂p;q is

F̂ p;q ¼ 2��
pqe�ðd= sin�Þðp2þq2�2pq cos�Þ1=2

ðp2 þ q2 � 2pq cos�Þ1=2 : (5)

This leads to the final result for deflection coefficients

dR¼ i��
e�kd=cosð�=2Þ

2sinð�2Þ
; dL¼�i��

e�kd=sinð�=2Þ

2cosð�2Þ
: (6)

An apparent consequence of Eq. (6) is that deflection is
exponentially small when the plasmon wavelength is �d.
Less obvious is that, for kd < 1 and small �, coefficients
dR and dL can differ exponentially. This is because the
exponent expð�2kd=�Þ in dL can be small if kd is small.
Note that, in the long-wavelength limit kd � �, we still
have dR=dL � 1=� � 1. The underlying reason is that dL
corresponds to the wave which travels almost in the oppo-
site direction to the incident wave, while dR travels almost
along the incident wave. From Eq. (6) we conclude that the
Born approximation applies at � � �.
The reflection coefficient rðkÞ, in the second Born ap-

proximation, is expressed via the matrix elements [Eq. (5)]

rðkÞ ¼ 1

4i�k

Z 1

�1
dp

p2 � k2 � i�
F̂�k;pF̂p;k: (7)

The integral in Eq. (7) is the sum ð2��Þ2kðI1 þ iI2Þ of
contributions from the poles p ¼ �k and the principal
value, which can be cast in the form

I1 ¼ P
Z dpp2

p2 � k2
e�d= sin�ðp2þk2�2pk cos�Þ1=2

½ðp2 þ k2Þ2 � 4p2k2cos2��1=2
� e�d= sin�ðp2þk2þ2pk cos�Þ1=2 ;

I2 ¼ �

2 sin�
e�kd½1= cosð�=2Þþ1= sinð�=2Þ�:

(8)

For short wavelengths kd � 1, the dependence rðkÞ
is dominated by the integral I1 � �ð�2=2Þ�
ðkd sin�=�Þ�3=2e�2kd= sin�. In the long-wavelength limit

kd � 1, one can replace the exponent e�kd= sin� by 1. In
what follows, we will focus on small �, where dL and r
diverge. Note that the pole contribution in Eq. (8) diverges
for � ! 0 much stronger than the principal value contri-
bution, which is / lnð1=�Þ, so that r � �2�2=2�. We also
notice that, in the small-� domain, the relation r � dLdR
holds. This relation can be understood from the following
reasoning.
There are two contributions to the reflected wave in the

second Born approximation. (i) The wave deflected into the
second tube to the right with the amplitude (solid arrow in
Fig. 1) undergoes a secondary deflection back into the first
tube (dashed arrow in Fig. 1) with amplitude dL. (ii) The
wave deflected into the second tube to the left dL is sub-
sequently deflected back into the first tube with the ampli-

FIG. 2 (color online). Oscillating corrections to the tunneling
conductance are plotted from Eq. (15) versus dimensionless bias
w ¼ Vx=s, where x is the distance from the intersection.
Periodic oscillations (black line) are modulated by a breathing
envelope (red line), with a period determined by �=�, where � is
the interaction parameter; (d) illustrates suppression of oscilla-
tions at finite separation d ¼ 0:01x between the nanotubes.
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tude dR (Fig. 1). The sum of the two contributions amounts
to r ¼ ðc1 þ c2ÞdLdR. Remarkably, both numerical factors
c1 and c2 are equal to 1=2. This is a consequence of a
strong difference in distances at which formation of the
primary left- and right-deflected waves takes place. The
wave dL is formed within �1=k from the intersection,
while the wave dR is formed within a much broader
interval �1=ðk�Þ. Therefore, in the second tube, at some
distance y from the intersection, such that 1=k � y �
1=ðk�Þ, the amplitude of the left-deflected wave is already
dL, while the amplitude of the right-deflected wave is only
1
2 dR. Subsequent formation of contribution (ii) occurs at

y� 1=ðk�Þ, so that the corresponding amplitude is
ð12dRÞdL, i.e., c2 ¼ 1=2. On the other hand, formation of

contribution (i) takes place only over negative �1=ðk�Þ<
y < 0 and thus results in dLð12dRÞ, i.e., c1 ¼ 1=2.

Semiclassical description.—From Eq. (6) one can see
that for � < �� the Born approximation renders an un-
physical result, namely, dR > 1, suggesting that this ap-
proximation is not applicable for small �. This manifests
the change in the mechanism of the plasmon scattering
which takes place for � & �. Indeed, at small �, the
incident wave travels closely to the wave dR over a long
distance, so that their amplitudes get mutually redistrib-
uted. Importantly, in describing this redistribution, one can
(i) neglect both left-deflected dL and reflected r waves and
(ii) employ a semiclassical approach, which yields

tðkÞ ¼ cos

�
2�

�

Z 1

0
dzK0½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d2 þ z2

p
�
�
;

dRðkÞ ¼ i sin

�
2�

�

Z 1

0
dzK0½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d2 þ z2

p
�
�
;

(9)

whereK0 is the MacDonald function. A remarkable feature
of this result is that t and r oscillate strongly with � and that
the oscillations scale with the interaction constant. Note
that, in the short-wavelength limit kd � 1, the perturbative
result Eq. (6) is valid even for � > �. Using the large-
argument asymptote of K0ðzÞ, it is easy to see that Eq. (9)
reproduces Eq. (6) in this limit. For the long-wavelength
limit kd � 1, Eq. (9) yields dR ¼ sinð��=�Þ, t ¼
cosð��=�Þ, so that the perturbative and semiclassical re-
sults match at �=� & 1.

To outline the derivation of Eq. (9), we note that the
system of equations (2) can be rewritten as two indepen-
dent closed equations

ð!2=v2
FÞu�ðxÞ ¼ D̂fu�ðxÞg � F̂fu�ðxÞg; (10)

where combinations u�ðxÞ ¼ u1ðxÞ � u2ðxÞ are intro-
duced. Searching for the semiclassical solution of Eq.

(10) in the form u�ðxÞ ¼ eikxþi’�ðkxÞ, with slowly varying
phase ’0� � 1, we find

2’0�ðkxÞ ¼ 	�K0f½1þ ’0�ðkxÞ�k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2�2

p
g: (11)

In evaluating the right-hand side, we assumed that � is
small. We see that when � is small, the assumption ’0� �
1 is justified. Then the smallness of ’0� allows one to

neglect it in the argument of K0. Upon integrating
Eq. (11), we find ’�. Then transforming back to u1 and
u2, we recover Eq. (9). The expression for rðkÞ generalized
to the domain � < � < 1 follows from Eqs. (6) and (9):

rðkÞj�<� ¼ dRdL

¼ ��

2
e�2kd=� sin

�
2�

�

Z 1

0
dzK0½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d2 þ z2

p
�
�

(12)

and in the long-wavelength limit simplifies to rj�<� ¼
ð��=2Þ sinð��=�Þ.
Tunnel density of states.—Most importantly, the non-

trivial dependence of the plasmon scattering on � and �
manifests itself in the observables, e.g., in the dependence
of tunnel density of states �ð!; xÞ on the distance x from
the intersection. To illustrate this, consider first a single
nanotube with inhomogeneity at x ¼ 0 which scatters
plasmons with reflection coefficient ~rðkÞ. Then the correc-
tion to the tunnel density of states reads

��ð!; xÞ
�0ð!Þ ¼ �ð�þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �=2

q j~rð!=sÞj
ð2!x=sÞ�þ1

� sin

�
2!x

s
� ’ð!=sÞ � ��

2

�
; (13)

where ’ðkÞ ¼ argð~rÞ. Equation (13) follows from the ex-
pression for interaction contribution to the local Green
function which takes into account the plasmon scattering:

Gðx; tÞ ¼ exp

�
��

Z
dk

�jRx ukj2sk
8vF

þ jukðxÞj2vF

8sk

�

� ð1� e�isjkjtÞ
�
: (14)

Here ukðxÞ are the plasmon eigenmodes: ukðxÞ ¼ ½eikx þ
~rðkÞe�ikx�= ffiffiffiffiffiffiffi

2�
p

and ukðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� j~rj2Þ=2�p

eikx for kx <
0 and kx > 0, respectively. Expanding the exponent in
Eq. (14) with respect to ~r, and evaluating �ð!; xÞ ¼
��1Re

R1
0 dtei!tGðx; tÞ, we arrive at Eq. (13).

Equation (14) emerges upon representing electrons via

the dual bosonic fields �i� and �i�, c i� � eið�i���i�Þ; i ¼
1; 2 labels the two bands; � ¼"; # are the spins [8].
Interaction is completely described by the charged field
�c ¼ 1

2

P
i��i�, while the three neutral sectors are non-

interacting. Expansion [15] �cðxÞ ¼ �
ffiffiffiffiffi
n0

p R
dkukðxÞQ̂k,

�cðxÞ ¼ ð1=@ ffiffiffiffiffi
n0

p ÞR dk½Rx dyukðyÞ�P̂k over the plasmon

eigenmodes ukðxÞ reduces the interacting Hamiltonian to

a system of harmonic oscillators fQ̂k; P̂kg yielding Eq. (14).
A simple reasoning allows one to generalize Eq. (13) to

the case of two intersecting nanotubes. Indeed, with inter-
section playing the role of inhomogeneity, instead of one
reflected wave with reflection coefficient ~r, we have two
independent modes u�ðxÞ, solutions of Eq. (10), with
reflection coefficients r�. It is important that, while the
absolute values rþ and r� are the same and equal to jdLj,
given by Eq. (6), their phases are different and are equal to
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’þðkxÞ � ’þð�kxÞ and ’�ðkxÞ � ’�ð�kxÞ þ �, respec-
tively, where ’� are determined by Eq. (11). Because of
this difference in phases, the oscillations / sin½2!x=sþ’�
in Eq. (13) transform into a beating pattern

��ð!; xÞ
�0ð!Þ ¼ ��ð�þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �=2

q ��

2

e�2!d=s�

ð2!x=sÞ�þ1

� sin

�
2�

�

Z !x�=s

0
dzK0½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!d=sÞ2 þ z2

q
�
�

� cos

�
2!x

s
� ��

2

�
: (15)

Equation (15) is our main result. Remarkably, the shape of
the envelope of cosð2!x=sÞ oscillations depends strongly
on the interaction parameter �, offering a unique signature
of Luttinger liquid behavior. In particular, the number of
nodes in the envelope is equal to �=�. Examples of oscil-
lations Eq. (15) are plotted in Fig. 2 in terms of tunneling
conductance GðV; xÞ / �ð! ¼ V; xÞ for different inter-
action parameters. Note that the language of reflected
plasmons rþ and r� applies at distances x � s=V, over
which the reflection coefficient is formed. Since the char-
acteristic scale of the envelope is s=V�, Eq. (15) is valid as
long as � � 1. For large x � s=V�, the argument of the
sine in Eq. (15) saturates at ��=�. On physical grounds,
the magnitude of the cosð2Vx=sÞ oscillations at large x
should be given by Eq. (13), with element of scattering
matrix r instead of ~r. From Eq. (12) we realize that this is
indeed the case.

Implications.—Our main prediction is that, for purely
capacitive coupling between nanotubes, the conductance
GðVÞ into one or both ends of crossed nanotubes must
exhibit a structure, as shown in Fig. 2, with a large char-
acteristic ‘‘period’’ V � s=ðL�Þ, where L is the distance
from the end to the intersection. Smallness of � ensures
that this structure (envelope in Fig. 2) is distinguishable
from size-quantization-like ‘‘filling’’ of the envelope
[8,16], which changes with the period V ¼ �s=L. Also,
an important prediction is that the envelope beating struc-
ture in Fig. 2 vanishes with temperature much slower than
the filling, which vanishes at T � s=L.

The loop geometry of Ref. [17] offers another possible
experimental implication. For this geometry, the easiest
way to compare the Sagnac oscillations in Ref. [17] and
our finding Eq. (15) is to assume that interaction is weak.
Then the contribution to the differential conductance from
the Sagnac effect is roughly the product of ‘‘size-
quantization’’ oscillations / cosð2VL=vFÞ and the enve-
lope / cosð2VLug=v2

FÞ, where V is the source-drain bias,

L is the loop perimeter, and ug is the gate-induced detuning

of the ‘‘left’’ and ‘‘right’’ velocities. Our Eq. (15) for this
geometry contains the same first cosine cosð2VL=vFÞ,
while the envelope is entirely due to interactions. Thus, a
common feature of the two effects is that envelopes survive
at ‘‘high’’ temperatures when Fabry-Perot oscillations
vanish.

Concluding remarks.—Adding a second parallel nano-
tube to a given one leads [18] to a reduction of � in GðVÞ
by a factor of 2. One could expect that, for a finite crossing
angle, the effect of the second nanotube is weaker. We
found, however, that GðVÞ depends on � in a nonanalytical
fashion when � ! 0. This nonanalyticity translates into a
peculiar bias dependence of G, as shown in Fig. 2. Thus,
for crossed nanotubes, GðVÞ is extremely sensitive to the
value of intratube Luttinger liquid parameter g. In armchair
nanotubes, the currently accepted value [1–3] is in the
range 0.19–0.26. We emphasize that changing g from
0.19 to 0.26 leads to the increase of the interaction parame-
ter � by a factor of 2, which would have a drastic effect on
the shape of envelope in �GðVÞ (Fig. 2).
Concerning the relation between our study and earlier

studies [5,13] of crossed nanotube junctions, this relation is
exactly the relation between plasmon and electron scatter-
ing. In the above papers, anomalies were either due to
direct passage of electrons through the crossing point
[13] or due to crossing-induced electron backscattering
[5]. Scattering of plasmons was disregarded in Ref. [5].
This is justified for perpendicular nanotubes of Ref. [5]. As
shown in this Letter, scattering of plasmons becomes im-
portant at small angles.
The work was supported by the Petroleum Research

Fund (Grant No. 43966-AC10), DOE (Grant No. DE-
FG02-06ER46313), and the Research Corporation
(J.M.G.).

[1] M. Bockrath et al., Nature (London) 397, 598 (1999).
[2] Z. Yao et al., Nature (London) 402, 273 (1999).
[3] H. Postma et al., Science 293, 76 (2001).
[4] H. Ishii et al., Nature (London) 426, 540 (2003).
[5] B. Gao et al., Phys. Rev. Lett. 92, 216804 (2004).
[6] N. Y. Kim et al., Phys. Rev. Lett. 99, 036802 (2007).
[7] See the review H. Steinberg et al., Nature Phys. 4, 116

(2008), and references therein.
[8] C. Kane, L. Balents, and M. P. Fisher, Phys. Rev. Lett. 79,

5086 (1997).
[9] I. Ussishkin and L. I. Glazman, Phys. Rev. Lett. 93,

196403 (2004).
[10] M. Fabrizio and A.O. Gogolin, Phys. Rev. B 51, 17 827

(1995).
[11] A. Komnik and R. Egger, Phys. Rev. Lett. 80, 2881 (1998).
[12] M. S. Fuhrer et al., Science 288, 494 (2000).
[13] A. Bachtold et al., Phys. Rev. Lett. 87, 166801 (2001).
[14] D. L. Maslov and M. Stone, Phys. Rev. B 52, R5539

(1995).
[15] A. Gramada and M. E. Raikh, Phys. Rev. B 55, 1661

(1997); 55, 7673 (1997).
[16] T.V. Shahbazyan, I. E. Perakis, and M. E. Raikh, Phys.

Rev. B 64, 115317 (2001).
[17] G. Refael, J. Heo, and M. Bockrath, Phys. Rev. Lett. 98,

246803 (2007).
[18] K. A. Matveev and L. I. Glazman, Phys. Rev. Lett. 70, 990

(1993).

PRL 101, 256401 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

19 DECEMBER 2008

256401-4


