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Successful theories of phase transformation processes include classical nucleation theory, which

envisions a local equilibrium between coexisting phases, and nonequilibrium kinetic cluster theories.

Using computer simulations of the magnetization reversal of the Ising model in three different ensembles

we make quantitative connections between these physical pictures. We show that the critical nucleus size

of classical nucleation theory is strongly correlated with a dynamical measure of metastability, and that

the metastable phase persists to thermodynamic conditions previously thought of as unstable.
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Introduction.—The mechanism by which a material
transforms from one stable phase to another after a change
of thermodynamic conditions is of great theoretical and
practical importance [1,2]. Despite the long-standing in-
terest in this fundamental process several key aspects
remain poorly understood, particularly the behavior close
to the classical limit of stability [3,4]. Our understanding of
the transformation mechanism is based on two seemingly
different physical pictures. Classical nucleation theory
(CNT) envisions droplets of the new stable phase that are
in local equilibrium with an environment similar to the
formerly stable phase. This picture leads to an expression
for the free energy �FðNÞ of a droplet as a function of its
size N, with corresponding droplet densities

�ceðNÞ / expð� ��FðNÞÞ; (1)

where � ¼ 1=kBT. Here we have added the subscript ‘‘ce’’
to emphasize that these densities can be computed only in a
constrained equilibrium in which the transformation pro-
cess cannot progress to completion.

Cluster dynamics theories, on the other hand, model the
time evolution of droplet populations through a set of
coupled kinetic equations that represent cluster processes
such as coagulation or dissociation. These equations are of
the form

@�tðNÞ
@t

¼ X
�

�Nð�ÞRð�Þ; (2)

where �tðNÞ is the density of N-mers at time t, the sum is
over all possible elementary processes �, Rð�Þ is the
reaction rate, and �Nð�Þ is the stoichiometric number of
N-mers in the reaction � [5]. These theories rely on the
assumption that the size N is sufficient to describe the
cluster growth dynamics, for which there is numerical
evidence [1,6,7]. To solve this set of equations the rates
Rð�Þ must be specified. In addition to several heuristic
arguments one generally requires these rates to obey de-
tailed balance with respect to the distribution (1) so that
�ceðNÞ is the time invariant solution of (2). The validity of

this assumption is not clear a priori. While the underlying
microscopic dynamics obeys detailed balance with respect
to the equilibrium distribution of microstates, it is not
obvious whether the transition rates between clusters of
different sizes obey any balance condition, let alone de-
tailed balance with respect to �ceðNÞ. We are not aware of
any explicit verification of this crucial assumption.
Solving the infinite set (2) of coupled equations is ex-

ceedingly complex. To compute experimentally relevant
quantities such as the nucleation rate it is common to
consider a hypothetical process in which clusters are re-
moved from the system when they reach a threshold size
Nmax; i.e., one introduces an absorbing boundary in N
space. Together with a corresponding source term for small
clusters one then solves for the time-independent steady-
state solution �ssðNÞ of (2). This steady state entails a net
flux towards larger droplets.
The relationship between the densities �ce, �t and �ss

and their respective ensembles is of fundamental impor-
tance to our understanding of phase transformation pro-
cesses. While some of these have been computed for
various model systems [7–13] we are not aware of any
study that measures all three densities for the same system
and thermodynamic conditions. In this Letter we report
such measurements for the change in magnetization of the
Ising model after reversal of the external field. These
measurements allow us to establish quantitative connec-
tions between the different physical pictures outlined
above. We focus on two questions that could not be ad-
dressed by considering only one of these ensembles. First
we investigate whether the nonequilibrium rates Rð�Þ obey
detailed balance with respect to the constrained equilib-
rium distribution (1). We find that this is indeed the case for
the dominant cluster growth process. Second we study
whether the key quantity of CNT, the critical nucleus
size Nc defined as the location of the maximum in
�FðNÞ, is relevant to the dynamics of clusters. We confirm
this assumption, and use a novel dynamical measure of
cluster growth to locate the limit of stability. Our findings
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suggest that droplets remain metastable even at thermody-
namic conditions that were previously believed to be
unstable.

Model and ensembles.—We consider the Ising model on
a cubic lattice of volume V, i.e., a set of spin variables si ¼
�1, 1 � i � V, with energy function E ¼ �h

P
isi �

J
P

<i;j>sisj, where the second sum includes all pairs of

nearest-neighbor lattice sites. Our calculations are per-
formed at J=kBT ¼ 0:369, or 0.6 times the critical tem-
perature. We propagate the system by flipping a randomly
selected spin with probability minf1; expð��E=kBTÞg,
where �E is the change in energy due to the flip.

We are interested in the transformation of the ‘‘down’’
(si ¼ �1) phase to the ‘‘up’’ (si ¼ 1) phase after a quench
to positive values of the field h. We define a cluster as a
collection of nearest-neighbor up spins, other definitions
can be found in the literature [1,14]. For a given spin
configuration we define MN as the number of clusters of
size N.

We compute the mean cluster densities �XðNÞ ¼
hMNiX=V in three different ensembles, specified by the
subscript X, corresponding to the three physical pictures
outlined in the introduction. The first is the constrained
equilibrium ensemble envisioned in CNT. This ensemble
can be sampled in simulations by rejecting spin flips that
would create a cluster of a size larger than a chosen
threshold Nmax, which frustrates global phase transforma-
tion. The average cluster density �ceðNÞ computed in this
ensemble can be used to calculate the droplet free energy
[8]

FðNÞ ¼ �kBT ln�ceðNÞ; (3)

which implies (1) after setting �FðNÞ ¼ FðNÞ � Fð1Þ.
Figure 1 shows these free energy profiles for a wide

range of quench depths. These results confirm the funda-
mental prediction of CNT. In particular, �FðNÞ has a
single maximum that defines the critical nucleus size Nc.
The regularity of these profiles establishes the validity of
CNT up to quench depths h=J � 0:8, even though earlier

studies suggested a breakdown of CNT under these con-
ditions [4,15].
The range of thermodynamic conditions for which we

can compute �FðNÞ using this method is limited by the
magnitude of the energy barrier at small quench depths,
which necessitates the use of advanced sampling tech-
niques [7]. At large quench depths, on the other hand, the

average density of up spins
PNmax

N¼1 N�ceðNÞ becomes suffi-

ciently large so that the assumptions of independent cluster
populations, employed in the derivation of (3), no longer
holds. In this case the crowding of droplets induces addi-
tional many-body interactions, which lead to a Nmax de-
pendence of �FðNÞ. If this dependence becomes
significant for values of Nmax smaller than or comparable
to Nc, the free energy profile of an individual droplet can
no longer be computed by this method.
The second ensemble corresponds to the time-dependent

growth of domains following the reversal of the field.
Ensemble averages, denoted by h� � �it, depend explicitly
on the time t since the process was initiated. Figure 2
shows the droplet densities �tðNÞ during the initial stages
of nucleation. These functions are monotonically decreas-
ing, and for fixedN the cluster densities converge to a time-
independent value. Importantly, this density is different
from the CNT prediction �ceðNÞ ¼ expð��FðNÞÞ. These
densities coincide for small cluster sizes up to approxi-
mately Nc, where �ceðNÞ has a minimum while �tðNÞ
remains monotonic. This comparison shows explicitly
that droplets smaller than Nc are indeed in local equilib-
rium with their environment, as envisioned in CNT. These
clusters repeatedly grow and shrink and hence sample the
metastable equilibrium distribution. Clusters larger than
Nc, on the other hand, predominantly grow and are no
longer in equilibrium.
The densities shown in Fig. 2 are intensive quantities

and do not depend on the system volume. The probability
of observing a nucleation event in a single trajectory,
however, depends on how V compares to expð�FðNcÞÞ,
and thus changes qualitatively as one varies either the

FIG. 1. Droplet free energy for various quench depths h=J as
indicated in the figure. �FðNÞ has a single maximum at the
critical nucleus size Nc and a corresponding activation barrier
�FðNcÞ, which both decrease with increasing quench depth.

FIG. 2 (color online). Droplet densities computed in three
different ensembles for a quench to h=J ¼ 0:65. �ce is the
constrained equilibrium density (Nmax ¼ 120), �t the time-
dependent density for t ¼ 2, 10, 20, 30, 40, 50, 100 (left to
right), and �ss the steady-state density (Nmax ¼ 300).
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quench depth or the simulation size. In particular, at any
quench depth one is likely to observe more than one critical
nucleus in the simulation box when the volume V is larger
than 2�tðNcÞ�1. The appearance of several growing drop-
lets is hence not sufficient evidence by itself for a break-
down of CNT or the onset of collective dynamical effects
[3,4]. For V < �tðNcÞ�1, on the other hand, one observes
the spontaneous formation of droplets of those intermedi-
ate sizes N for which V�tðNÞ * 1 [4]. This too is consis-
tent with CNT because �ceðNÞ � �tðNÞ forN <Nc. In this
case the average time for the first nucleation event to occur
anywhere in the system is a decreasing function of V [2].

The third ensemble we consider is that of the steady
state, which we generate in our simulations by replacing
droplets with down spins when their size exceeds a thresh-
old valueNmax. The cluster density �ssðNÞ computed in this
ensemble is also shown in Fig. 2. We find that over a wide
range of N the steady-state density equals the limiting
density of the corresponding time-dependent system. For
cluster sizes close to Nmax, however, �ssðNÞ is significantly
depleted relative to �tðNÞ at late times. This behavior can
be understood within the framework of kinetic theories of
cluster dynamics. Consider the population of clusters of a
size close to Nmax. In the nonequilibrium ensemble, this
population is diminished by growth to larger clusters, and
replenished by shrinkage of such clusters. In the steady-
state ensemble the rate of such growth processes remains
unchanged, whereas the shrinkage of clusters larger than
Nmax is suppressed, which leads to a lower steady-state
density. This behavior is similar to that observed in diffu-
sive processes in the presence of an absorbing wall. In this
Letter we will focus on observables sufficiently far away
from the boundary, where the late-time behavior of the
time-dependent ensemble is recovered.

Results.—To compute the rate constants that appear in
(2) we need to characterize all possible processes � that
change the cluster densities �ðNÞ. Let s be the spin state of

a lattice site before a flip. For s ¼ �1 (s ¼ 1) let m be the
number of unique nearest-neighbor clusters before (after)
the flip, and N1; . . . ; Nm be their sizes. For definiteness we
require that Ni � Nj for 1 � i � j � m. These numbers

uniquely define the reaction �, which we therefore write as
(s, m, N1; . . . ; Nm). For example, the process (�1, 1, N)
corresponds to the growth of a cluster of size N to N þ 1,
whereas the process (1, 2, N1, N2) is the dissociation of a
droplet of size N1 þ N2 þ 1 into two clusters of size N1

and N2. The process ��1 ¼ ð�s;m;N1; . . . ; NmÞ is the
inverse process of �. The stoichiometric number of
N-mers in the reaction � can be written as �Nð�Þ ¼
�sð�1þPm

i¼1
Ni;N

�P
m
i¼1 �N;Ni

Þ. Limiting the sum in (2)

to only those processes with m ¼ 1 one recovers the clas-
sical Becker-Döring equation [1,16].
We calculate the reaction rates Rssð�Þ in the steady-state

ensemble by monitoring how many times the process �
occurs per unit volume and unit time. These rates do not
observe detailed balance due to the presence of a net flux
towards larger clusters (Fig. 3). The rate of the growth
process N ! N þ 1 is larger than the rate of the reverse
process, and their ratio increases with droplet size N.
Dynamical theories of cluster growth assume that these

rates obey detailed balance with respect to the density (1).
To test this assumption we calculate what the rates would
be in the constrained equilibrium ensemble, using the
kinetic information from the steady-state calculation.
Assuming first order kinetics, we compute these rates as
Rssð�Þ�ceðNÞ=�ssðNÞ for the N ! N þ 1 reaction, and
Rssð��1Þ�ceðN þ 1Þ=�ssðN þ 1Þ for the reverse process.
These rates are indeed equal within the accuracy of our
simulations (Fig. 3). This numerical verification of one of
the key assumptions of kinetic theories of cluster growth
validates their extensive use in the field of phase trans-
formation studies.
We now turn our attention to the critical nucleus size Nc.

In CNT this size separates droplets that are likely to shrink
from those that are likely to grow. From its definition it is
not obvious whether this size is significant for the dynam-
ics of the transformation process. Previous studies have
shown that droplets of size Nc, generated from an equilib-
rium distribution, have approximately equal probabilities
of growing and shrinking [7], thereby confirming the main
prediction of CNT. In experimental realizations of the
transformation process, however, droplets of size Nc may
already be out of equilibrium, as seen in Fig. 2. A direct
comparison between the constrained equilibrium quantity
Nc and the actual cluster dynamics is hence still needed.
For computational convenience we work again in the

steady-state ensemble. We define the net growth rate of
droplets of size N as

!ðNÞ ¼ X
�

�
�s;�1

Xm
i¼1

�Ni;N � �s;1�1þPm
i¼1

Ni;N

�
Rssð�Þ;

FIG. 3. Ratio of the forward and reverse rate of the process
� ¼ ð�1; 1; NÞ, i.e., the growth of a droplet of size N to N þ 1,
at quench depth h=J ¼ 0:65. In the steady-state ensemble the
growth rate exceeds that of the inverse process (triangles).
Applying the same rate constants to the constrained equilibrium
densities results in approximately equal forward and reverse
rates (circles).
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where the first term takes into account coagulation pro-
cesses that involve droplets of size N, and the second term
counts processes involving the dissociation of droplets of
sizeN. We defineNk as the droplet size for which!ðNkÞ ¼
0 [17]. A droplet of sizeNk hence has equal probabilities of
growing and shrinking in the steady-state ensemble.

Figure 4 shows Nc and Nk for a large range of thermo-
dynamic conditions. We find excellent agreement between
these quantities over the range of quench conditions for
which both can be computed. This provides explicit evi-
dence that the CNT quantityNc is useful to characterize the
dynamics of cluster growth. For very deep quenches we
find that Nk is smaller than the CNT prediction, presum-
ably due to the previously discussed crowding of droplets.
Surprisingly we find that clusters remain dynamically
metastable up to a quench depth h=J ¼ 1:18, which is
significantly deeper than previous estimates of the limit
of stability [4,18]. For even deeper quenches the growth
rate !ðNÞ is positive for all droplet sizes, which implies
that a monomer already exceeds the critical size.

In summary, we have studied the magnetization reversal
in the nonconserved Ising model in three different ensem-
bles, corresponding to the physical pictures embodied in
standard theories of phase transformation processes. This
allows us to make quantitative connections between these
pictures, and to compute observables that are not acces-
sible by computations in only one ensemble. We have
provided evidence that the cluster dynamics obeys detailed
balance with respect to the constrained equilibrium den-
sities, which is a fundamental and previously untested
assumption in kinetic theories of droplet growth. We
have also shown that the critical nucleus size, as computed
within the CNT framework, correlates very well with a

dynamical measure of droplet stability. These findings
validate the assumptions underlying the classical theories
of phase transformation processes. We show that the dy-
namically defined critical nucleus size decreases smoothly
up to the limit of stability, which is located at unexpectedly
deep quenches.
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