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We study the reversed-field pinch through the numerical solution of the compressible magneto-

hydrodynamic equations. Two cases are investigated: In the first case the pressure is derived from an

adiabatic condition, and in the second case the pressure equation includes heating terms due to resistivity

and viscosity. In the adiabatic case a single helicity state is observed, and the reversed-field pinch

configuration is formed for short time intervals and is finally lost. In the nonadiabatic case the system

reaches a multiple helicity state, and the reversal parameter remains negative for a longer time. The results

show the importance of compressibility in determining the large scale dynamics of the system.
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A reversed-field pinch (RFP) is a toroidal configuration,
with minor radius a and major radius R, used to confine
plasmas in fusion machines [1]. The poloidal (B�) and
toroidal (B�) components of the magnetic field in a RFP

are mostly generated by electric currents flowing in the
plasma, and they are of the same order of magnitude. This
configuration is characterized by a safety factor q ¼
rB�=RB� (r is the radial coordinate) which is less than

unity in the core and negative at the edge, and the toroidal
magnetic field changes sign at the edge with respect to the
core. Because of this shape of the safety factor, many m ¼
1 and n > R=amodes are resonant in the plasma, while the
B� reversal surface is resonant for all m ¼ 0 modes [1] (m

and n are the poloidal and toroidal mode numbers,
respectively).

Besides the interest in these kinds of machines as po-
tential fusion reactors, they are also important for the study
of fundamental issues like plasma relaxation, plasma tur-
bulence, and its effects on plasma confinement. Many
experimental studies have been addressed to the clarifica-
tion of the mechanisms responsible for the formation and
sustainment of the RFP configuration through a dynamo
action induced by velocity and magnetic field fluctuations
[2,3]. For many years, the plasma in RFP configurations
has been observed in multiple helicity (MH) states char-
acterized by several helicities m=n with comparable am-
plitudes in the magnetic spectrum. In recent years,
different experiments [4,5] have shown the existence of
quasihelical configurations. Single helicity (SH) or quasi-
single helicity (QSH) states are believed to provide a better
confinement with respect to turbulent RFP configurations.
Experimental studies have shown the improvement in con-
finement associated with the presence of QSH states [6–8].

The RFP configuration has been also studied through
numerical simulations of the magnetohydrodynamic
(MHD) equations. Numerical simulations, based on a
model with vanishing pressure and constant density
[9,10], have shown that the RFP configuration can be
sustained in a variety of regimes, which range from turbu-

lent MH states to SH states [11,12]. In such a model, it has
been noted that the existence of SH or MH states is

controlled by the Hartmann number H ¼ ð��Þ�1=2 (�
and � are the dimensionless viscosity and resistivity, re-
spectively) and pure SH states are observed in simulations
for H < 2000 [12,13]. The magnetic field generated by
these simulations has been used to study particle transport
and plasma confinement [14].
In this Letter, we show that including compressibility in

the simulations is not only a correction that modifies the
details of the system behavior, but it also affects the large
scale dynamics.
We describe the RFP plasma by a cylindrical geometry

with coordinates ðr; �; zÞ such that 0 � r � 1, 0 � � �
2�, and 0 � z � 2�R, and we solve the MHD equations
in terms of the field variables density (�), momentum
componentsMi ¼ ð�vr; �v�; �vzÞ, magnetic field compo-
nents Bi ¼ ðBr; B�; BzÞ, and thermal pressure p, in dimen-
sionless form:

@�

@t
¼ �r �M; (1)

@M

@t
¼ �r � ��Fþ J� B; (2)

@B

@t
¼ �r� E; (3)

@p

@t
¼�½r�ðvp�ktrTÞþð��1Þpr�v�þð��1ÞHp:

(4)

In Eq. (4), � ¼ 5=3 is the adiabatic index, T is the tem-
perature T ¼ p=�, and kt is the thermal conductivity. In
the simulations that we describe in this Letter, kt has been
set to zero assuming that typical values in RFP plasmas are
very small, at least in the direction perpendicular to the

magnetic field. The flux tensor ��F in Eq. (2) has components

Fij ¼ Mivj þ p�ij ��	ij; (5)
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where 	ij is the stress tensor. In the induction equation (3),

the electric field E is given by the expression

E ¼ �v� Bþ �J;

where J ¼ r�B defines the current density and � is the
dimensionless resistivity. In the pressure equation (4), the
heat production term Hp is given by

Hp ¼ �J2 þ�½12UijUij � 2
3ðr � vÞ2�;

where the tensor Uij is defined as

Uij ¼ 	ij þ 2
3ðr � vÞ�ij: (6)

We use the minor radius a of the torus (or the radius of the
cylinder) as the unit length scale in the equations. We
choose as the unit measure for the magnetic field and for
the mass density typical values B0 and �0, respectively,
which allows us to define a characteristic value for the
Alfvén velocity vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4��0

p
. Hence, we normalize

the velocity to vA and the time to the typical Alfvén
time: 
A ¼ a=vA. Finally, the pressure p is measured in
units of �0v

2
A.

Boundary conditions at r ¼ 1 are imposed assuming
that the plasma is bounded by a conducting wall [15]. To
obtain plasma relaxation with a field reversal, the system
must be driven from the outside. This is realized assuming
a constant toroidal current, which is equivalent to imposing
a constant poloidal magnetic field at the boundary for the
ð0; 0Þ mode.

Space derivatives are computed using compact finite
differences [16] along the radial direction r and with a
pseudospectral method in the periodic directions. Time
integration is given by a third-order Runge-Kutta explicit
scheme.

As the initial state, a force-free equilibrium magnetic
field has been chosen, characterized by the following
safety factor [17]:

qðrÞ ¼ q0ð1� 1:8748r2 þ 0:832 32r4Þ; (7)

which is obtained by resistive diffusion from a stable
configuration [18]. The dynamo action is demonstrated if
the reversal of the axial field is maintained, which is
controlled by the reversal parameter

F ¼ B0;0
z ðaÞ
hBzi ;

where hBzi is the average of the axial field over the poloidal
cross section and B0;0

z ðaÞ is the average of BzðaÞ in the �
and z directions.

Compressible MHD equations include heat production
[last term of Eq. (4)] that, in contrast, plays no role in the
incompressible case. One aim of the present work is to
investigate the dynamical effect of heat production in the
compressible case. One possibility is to neglect completely
heat production. In this case, if the thermal conductivity is
vanishing and if � and p are initially uniform, then Eq. (4)
implies p��� ¼ const: Then, in the first simulation, we

replace Eq. (4) by the adiabatic condition p��� ¼ const:
On the contrary, in the second simulation, the full set of
Eqs. (1)–(4) has been solved. Realistic values of the
Reynolds numbers cannot be used in the numerical simu-
lations due to the high resolution and computational time
that would be necessary. Therefore, the Reynolds numbers
used in the simulations are much smaller than the real ones,
so that heat production occurs in the nonadiabatic simula-
tion at spatial scales that are larger than in the real system.
On the other hand, in the adiabatic simulation, heating is
totally absent. The comparison between the adiabatic and
the nonadiabatic runs can thus give us some insight about
how the RFP dynamics is affected by the inclusion of heat
production.
Both simulations have been carried out with � ¼ 2�

10�4, � ¼ 2� 10�4, and kt ¼ 0. Simulations with q0 ¼
0:4 and an aspect ratio R=a ¼ 1 have been performed in
previous studies with uniform density and pressure [9,17].
An aspect ratio of 1 is unrealistic, but it has the advantage
of requiring a lower resolution. With a larger aspect ratio,
the dynamics of the system can change, since more modes
are present. In Ref. [9], a simulation with an aspect ratio
R=a ¼ 2 and q0 ¼ 0:2 has also been described, and the
results were in agreement with the case with R=a ¼ 1 and
q0 ¼ 0:4. In a previous work [15], we showed the impor-
tance of compressibility in simulations with R=a ¼ 1 and
q0 ¼ 0:4. The simulations described in the present Letter
are performed with the more realistic values R=a ¼ 2 and
q0 ¼ 0:2.
The initial equilibrium is strongly unstable with respect

to the (m ¼ 1, n ¼ �4) mode [9]; therefore, the following
perturbation has been superposed to the equilibrium field:

FIG. 1 (color online). Isosurface of the density in the adiabatic
run at t ¼ 400 and � ¼ 1:05. The cylinder represents the whole
spatial domain.
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vr ¼ �ð1� r2Þ X�1

n¼�4

cosð�þ nz=RÞ; (8)

v� ¼ �ð1� r2Þ X�1

n¼�4

sinð�þ nz=RÞ: (9)

The r dependence has been chosen to be compatible with
the boundary conditions, and � is the amplitude of the
perturbation, which has been set to � ¼ 10�4.

The initial noise destabilizes the system, and the un-
stable modes begin to grow exponentially in the linear
phase. In the first simulation (adiabatic case), after the
formation of a SH state around t ¼ 30, the system keeps
this configuration until the end of the simulation at t ¼
400. The existence of a SH state is evident in Fig. 1, which
shows the structure of the density at the end of the simu-
lation. The density is concentrated near the axis of the
cylinder, with the presence of a single dominant modem ¼
1, n ¼ �4. The states of single or multiple helicity can be
identified by evaluating the spectral spread Ns [8], defined
as

N�1
s ¼ X

n

�
B2
1;nP

n B
2
1;n

�
2
: (10)

If Ns ’ 1, the system is in a SH state; otherwise, it is in a
MH state. The spectral spread Ns is shown in Fig. 2 as a
function of time. In the first phase, many modes of com-
parable amplitudes are present due to the initial perturba-
tions. After t ’ 50, Ns ¼ 1 and a SH state is maintained
until the end of the simulation.

The time evolution of the reversal parameter F is shown
in Fig. 3. After losing the reversal, the F parameter in-
creases until t ’ 85, then it shows an oscillatory behavior,
becoming positive and negative several times, and, after
t ’ 300, F continues to increase until the end of the
simulation.

The evolution of the system can be strongly modified by
a weak heating caused by viscosity and resistivity. In the
second run, we used Eq. (4) instead of the adiabatic con-
dition. Differently from the adiabatic case, the system

shows a transition from a SH state to a more turbulent
MH state. The spectral spread Ns is shown in Fig. 4 as a
function of time. After t ’ 50, Ns ¼ 1 and a SH state is
maintained until t ’ 130. At later times, Ns increases, and
it reaches a maximum value above 3 at t ’ 190, indicating
a MH state. In Fig. 5, we show an isosurface of the density
� for a MH state at t ¼ 190. Contrary to what happens in
the first run, the density is not only concentrated near the
axis of the cylinder, there is a more complex structure,
which is the result of the superposition of different helic-
ities. As expected, plasma heating induces the growth of
new modes at large scales. Even a relatively small value of
the resistivity and viscosity produce enough heating to
modify the mass distribution inside the cylinder, and the
plasma is evacuated from heat production regions. The
development of a broader energy spectrum implies the
presence of smaller scales, which in turn makes the heating
production even more effective.
The time evolution of the reversal parameter F is shown

in Fig. 6. In the beginning of the simulation, the initial
reversal is lost, and the reversal parameter F continues to
increase until t ’ 50. Later, the dynamo effect due to the
growth of the instabilities makes F decrease and become
negative again, reaching a minimum value F ’ �0:4.
Subsequently, it shows an oscillatory behavior, remaining
below zero except for a short time around t ’ 90. These

FIG. 2. The spectral spread Ns as a function of time in the
adiabatic case.

FIG. 3. Time evolution of the reversal parameter F for the
adiabatic run.

FIG. 4. The spectral spread Ns as a function of time in the
nonadiabatic case.
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oscillations are not observed in simulations with constant
density and vanishing pressure [10].

In both the adiabatic and the nonadiabatic cases, the
behavior of the system is different from that derived for
p ¼ 0 and � ¼ const: The effects of compressibility are
not limited to secondary details, but the large scale dy-
namics of the system is affected, with consequences on
fundamental aspects, like the persistence of the RFP con-
figuration and the evolution of the reversal parameter.

By comparing the results obtained in the two simula-
tions, we conclude that the system is very sensitive to the
heating and the real RFP plasma probably exhibits an
intermediate behavior between the two situations studied
here. In the adiabatic case, we observe the formation of a
SH state, with a small spectrum formed by them ¼ 1, n ¼
�4 mode and its higher harmonics, but the RFP configu-
ration is formed only for short time intervals and is finally

lost. On the other hand, when the heating is present, we
observe a transition from a SH state to a more turbulent
MH state, with a larger spectrum. The excitation of small
scales makes the heating even more effective, and its
consequences on the system behavior become more im-
portant. The reversal parameter reaches more negative
values, and it remains negative for a longer time.
These results suggest that compressible simulations are

necessary for the numerical study of the dynamics of a
RFP. On the other hand, including compressibility, it be-
comes clear that the model used to describe heat produc-
tion is determinant to predict the behavior of the system. In
the simulations described in this Letter, the Hartmann
number is H ¼ 5000 in both cases, which would give
MH states in incompressible simulations. However, we
find that the formation of SH or MH states and the evolu-
tion of the reversal parameter are controlled by the model
used for heat production, which is not present in incom-
pressible simulations. The results are different in the adia-
batic and nonadiabatic cases, both of which are somewhat
different from the real system. Including compressibility
and using the correct model to describe heat production is
therefore important to understand the dynamics of the RFP.
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FIG. 6. Time evolution of the reversal parameter F for the
nonadiabatic run.

FIG. 5 (color online). Isosurface of the density in the non-
adiabatic run at t ¼ 190 and � ¼ 1:2, showing a MH state. The
cylinder represents the whole spatial domain.
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