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The full structure of a shock front around a blunt body in a quasi-two-dimensional granular flow is

studied. Two features, a large density gradient and a very small thickness of the front, characterize this

shock and make it different from shocks in molecular gases. Both of these features can be understood

using a modified version of the granular kinetic theory. Our model separates the particles into two

subpopulations: fast particles having experienced no collisions and randomly moving particles. This

separation is motivated by direct measurements of the particle velocities which show a bimodal

distribution. Our results not only shed new light on the use of the granular kinetic theory under extreme

conditions (shock formation) but bring new insight into the physics of shocks in general.
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Fluid flow around an obstacle has been a paradigm for
testing theories of simple and complex fluid flows. The role
of viscous stresses, the different instabilities that arise, the
transition to turbulence, the formation of shock waves, are
examples of the rich phenomenology of such a situation. A
granular material flowing around an obstacle engenders yet
another even more complex phenomenology. Previous ob-
servations have shown the existence of shock waves [1–3],
the formation of patterns [4], as well as a complex depen-
dence of the drag force versus velocity and density [5–8].
While of utmost importance for understanding flows in
liquids, the issue for a granular material flowing around
an obstacle is still not completely understood. For instance,
the formation of shocks can be readily observed in dilute
granular flows around an obstacle. The properties of these
shocks can be understood using continuum equations de-
rived from the granular kinetic theory [1]. The speed of
sound and its variation with density can also be understood
using arguments from this theory [2]. For higher densities,
the shock front develops very steep density gradients,
however, [4] and kinetic theory may break down as large
clusters form around the obstacle. Dense clusters are rou-
tinely reported in experiments and simulations of driven
granular media [9–12]. Here, we examine, experimentally,
the flow region near the obstacle for a supersonic quasi-
two-dimensional granular flow at varying volume frac-
tions. The details of this situation reveal several features
such as a gradual transition from gas to liquid to solid in the
vicinity of the obstacle. The dense region is separated from
the incident stream by a well-defined interface. This shock
front has a width and a structure which can be understood
using a simple model.

Our setup consists of two parallel glass plates set verti-
cally and spaced by a distance h of a few particle diameters
so our set up is quasi-two-dimensional. A circular obstacle
with a radius R and thickness h is inserted between the
plates. The summit of the obstacle is placed at distances

between 11 and 25 cm from the entrance of the cell. Glass
beads (diameter d ¼ 0:5 mm) or steel spheres (d ¼ 2 mm)
are then poured in the spacing between the plates from a
reservoir equipped with a gate whose opening controls the
injection flux. Four different values of the ratio h=d are
used: 2, 4, 6, and 8. The flow of these grains in the cell,
which fall under the action of gravity, is filmed using a fast
camera working at 4000 frames=s from which the particle
field and the velocity field can be obtained using a particle
tracking technique or particle imaging velocimetry. Laser
Doppler velocimetry (LDV) is used to measure the hori-
zontal (x) and vertical (z) velocity components and their
temporal fluctuations for the glass beads [13,14] at a single
location. This ensemble of measurements allows for an
accurate determination of the spatial variation of the
mean density as well as the spatial variation of the mean
velocity and its standard deviation. Since imaging of the
cell gives the time averaged surface fraction of particles�s

in the cell, we convert �s into a volume fraction using a
direct calibration and computer simulations. It turns out
that the time averaged volume fraction�V can be obtained
reliably from measurements of the surface fraction for
thicknesses up to a few grain diameters with the result

�V ¼ 2
3 ð1� ð1��sÞd=hÞ.

The interaction of the flowwith the obstacle is illustrated
in Fig. 1. When only a few grains fall, they interact solely
with the obstacle. As the number of grains increases, the
grains not only hit the obstacle but start colliding with each
other and with the incoming stream giving rise to a large
number of collisions in the region near the obstacle. As the
volume fraction of the incident flow �1 increases, the
region on top of the obstacle is host to an important
accumulation of grains with local volume fractions close
to a typical random loose packing value. This occurs for a
value of �1 which decreases with the radius of the ob-
stacle and which can be as small as 0.014. Note that the
height of the dense region increases as �1 increases (and
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as R increases). To appreciate this point, we plot, in Fig. 2,
the time averaged local volume fraction �VðzÞ along a
vertical cut. The origin of the vertical z axis is the summit
of the cylinder. The bottom inset of Fig. 2 shows the
linearity between an imposed �V and the volume fraction
obtained from a measurement of �s using the expression
quoted above which validates our conversion. Figure 2
illustrates that for very low �1, the volume fraction starts
out at the injection value far from the obstacle and in-
creases as the obstacle is approached. As�1 increases, the
maximum of the volume fraction �max

v near the obstacle

increases gradually versus �1 as shown in the inset of
Fig. 2. Beyond �1 of about 0.02, �max

V saturates at a value
close to the random loose packing value indicated by a
dotted line. In addition to the gradual increase of �max

V , the
shape of �VðzÞ varies. This variation can be parametrized
using a hyperbolic tangent profile with a characteristic
length scale 2�. The inset of Fig. 2 displays the scale �
which is large for low �1 and decreases as �1 increases.
Note that � starts out near 4 mm (8 grain diameters) and
decreases rapidly to reach values near one grain diameter at
�1 near 0.015. At higher �1, �VðzÞ does not change
markedly as shown in Fig. 2. The decay length is the
same while the position of the interface shifts to higher z
values. The conclusion from the measurements of Fig. 2 is
that the grains accumulate on top of the obstacle to form a
dense phase whose density increases gradually and whose
interface with the gaseous phase (the injected stream)
becomes sharper as �1 increases. This dense phase is
the result of the collisions of the grains with the obstacle
and the injected stream. The presence of a density gradient
is characteristic of a shock front and Fig. 2 therefore shows
its full structure with its very high density gradient and its
very sharp interface. The shock thickness, given by 2�, is
only a fraction of the mean free path lð�1Þ ¼ d

6
ffiffi

2
p

�1
. The

solid line in the upper inset of Fig. 2 is given by lð�1Þ
6 and is

independent of the ratios h=d used here and the radius R. In
contrast, the shock wave thickness in molecular gases at
high Mach numbers is roughly four mean free paths [15–
17]. Using the same definition as for shocks in gases, the

equivalent thickness here is 4lð�1Þ
6 .

To complement these density measurements we have
measured the velocity field and the velocity fluctuations
versus �1. An example of such a measurement showing
the time averaged velocity field hVi as well as the standard
deviation of the velocity fluctuations 1=2ð�V2

z þ �V2
x Þ,

related to an effective granular temperature T � �V2 (the
component Vy was not measured), is presented in Fig. 3.

While the streamlines are vertical in the upstream part of
the flow, they curve near the interface and the velocity
decreases as the obstacle is approached. The velocity stan-
dard deviation is low in the upstream region, increases near
the interface and decreases as the summit of the obstacle is
reached. While the velocity decrease and the rise in veloc-
ity fluctuations are expected for a shock front in molecular
gases [17], the cooling is not. To illustrate the cooling
which accompanies the density increase near the obstacle,
we fix the position of the velocity measurements at 1 mm
from the summit and vary �1. The experimental condi-
tions correspond to those of Fig. 2. Figure 4 shows that the
probability density functions (PDF) of Vx and Vz (obtained
from LDV measurements) are similar indicating a rela-
tively isotropic state of agitation near the obstacle. The
shape of the PDFs is very different from a Gaussian. Note
that as �1 increases a sharp transition to much narrower
PDFs occurs: a small variation of the injection volume
fraction leads to a large reduction of the width of the
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FIG. 2. �V ðzÞ for increasing �1: 0.005, 0.007, 0.01, 0.014,
0.015, and 0.017. R ¼ 12 mm, h ¼ 2 mm, and glass beads. The
lines are fits to a hyperbolic tangent profile. The vertical line
indicates the position of the measurements of Fig. 4. Upper inset:
characteristic length � of the density profiles for glass beads
(squares and triangles: 6 mm � R � 27 mm, h ¼ 4 mm, and
�1 ¼ 0:0045 and 0.007, respectively, filled triangle: R ¼ 6 cm
and h ¼ 2 mm, circles: R ¼ 6 mm and h ¼ 4 mm, filled circles:
R ¼ 12 mm and h ¼ 2 mm) and maximal density �max

V versus

�1 (R ¼ 6 mm, h ¼ 2 mm). Lower inset: �V deduced from �s

versus the imposed �V . Data obtained using different thick-
nesses h ¼ 2d for steel spheres and h ¼ 4d for glass beads.

FIG. 1. Photographs of the flow around a cylinder (R ¼
12 mm, h ¼ 2 mm, glass beads of d ¼ 0:5 mm) for different
�1 ¼ 0:004, 0.006, 0.01, and 0.017.
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velocity PDFs. The measurement of the velocity standard
deviation as well as the local density are shown in the inset.
While the fluctuations in velocity are high for low den-
sities, they decrease rapidly as the density increases. A
cooling of the granular medium is therefore observed in-
dicating a transition from gas to liquid and probably to a
solid like phase as �1 increases. This decrease in the
granular temperature of the dense zone is also observed
in a series of experiments where �1 is fixed and the
distance z is varied. This feature can be appreciated from
a plot of the PDFs of the vertical velocity Vz as shown in
Fig. 5. While far from the obstacle the PDF has a single
peak at the incident stream velocity V1, as the obstacle is
approached from above, the PDF becomes bimodal with a
peak at V1 and a peak centered at zero. Collisions with
other particles are important in giving rise to the peak at
zero. As z decreases, the peak at V1 decreases in height at
the expense of the peak at zero. Well inside the dense
region, the peak at nonzero velocity disappears completely
and the width of the PDF starts to decrease showing the
cooling discussed above. One can therefore distinguish two

subpopulations of particles: the fast particles and the ran-
domly flying slower ones. This feature is observed for the
different values of h=d used here, and obtained using both
LDV and particle tracking velocimetry, and for regions
where the local volume fraction is sufficiently small to
rule out effects due to the presence of the walls such as
local crystallization, for example.
In gases, the shock thickness decreases as the Mach

number M increases and saturates for large M (>5) at
about 4 times the mean free path of the gas molecules
[15,17]. In our case, the Mach number is about 9 for the
glass beads [2] and about 20 for the steel spheres [1] and
while the thickness � varies versus density it remains
proportional to but much smaller than the mean free path
(see Fig. 2). This fact as well as the structure of the shock
wave with its very large density gradient can be understood
using a simple one dimensional model. The model uses
elements of granular kinetic theory [18–21]with additional
input. The main ingredient of our model is that the popu-
lation of particles can be separated into two subpopula-
tions. The first subpopulation is composed of particles that
have experienced no collisions and fall with a velocity V1
and a volume fraction fðzÞ�1. The function fðzÞ starts at a
value of 1 far from the obstacle, decreases near the inter-
facial region and goes to zero very near the obstacle. The
second population is composed of particles that have ex-
perienced at least one collision and whose mean velocity
will be noted V�, volume fraction �� (which is small far
from the obstacle and increases as the obstacle is ap-
proached), and granular temperature T�. This separation
is inspired by the results of Fig. 5 which show that the
vertical velocity is bimodal. The volume fractions of the
two subpopulations are related by the conservation of the
mass flux which reads ��V�

z þ fðzÞ�1V1 ¼ �1V1. The
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FIG. 5. PDFs of the velocity Vz for a fixed �1 ¼ 0:016 and
varying positions z (glass beads, R ¼ 12 mm, h ¼ 2 mm).

FIG. 3 (color online). Velocity standard deviation and velocity
field for steel spheres (R ¼ 27 mm and h ¼ 4 mm).
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momentum balance equation reads: d
dz ðP� þ��V�2

z Þ ¼
� dfðzþdÞ

dz �1V21. The pressure P� is taken as ��T�ð1þ
��=�cÞ=ð1���=�cÞ [10,12]with �c the random close
packing volume fraction. The quantity fðzÞ is measured
experimentally by thresholding the particle velocity Vz

obtained from particle tracking to distinguish between
particles with a velocity close to V1 and the rest. The
granular temperature is given by T�ðzÞ ¼ 1=3ð�V�2

z þ
�V�2

x þ �V�2
y Þ and is plotted in Fig. 6. While the standard

deviation along z and x are known, that along the direction
perpendicular to the plates (y) is not and we assume it is
equal to that along x. Note that �V�2

z and �V�2
x are similar

in the dense region as we have observed before (Fig. 4) but
differ slightly farther out. Also, both quantities present a
plateau in the dilute region and decrease as the obstacle is
approached giving rise to the observed variation T�ðzÞ. We

define a local mean free path lð��Þ as follows: d=ð6 ffiffiffi

2
p

��Þ.
An additional ansatz concerns the variation of fðzÞ which
we take as dfðzÞ=dz ¼ f=lð��Þ which states that the frac-
tion of fast particles changes over a length scale given by
the locally defined mean free path in agreement with our
experimental data. By using the measured T�ðzÞ, a value of
�c ¼ 0:54 (smaller than the random close packing fraction
but close to the loose packing value) and the proposed
variation of fðzÞ, the momentum balance equation can be
solved numerically. The results of this calculation are
displayed in Fig. 6 where we plot the volume fraction
�VðzÞ ¼ �� þ f�1, the mean velocity hVzi, and fðzÞ
along with the results obtained from the numerical solu-
tion. The agreement is good for fðzÞ, hVzi, and �VðzÞ. The
length scale � coming out of this calculation is similar to
the one shown above in Fig. 2: lð�1Þ=6. The prefactor can
be understood in a simple way. By neglecting dissipation
and heat transfer, which is roughly valid in the region
where the temperature is constant and the volume fraction

small, the energy balance equation [10,22] leads to fðzÞ ¼
f1=½1þ expð� ðz� z0Þ=l0ð�1ÞÞ�g with l0ð�1Þ ¼ � ¼
e2

�þ2 lð�1Þ and z0 such that f ¼ 1
2 at z ¼ z0. The value of

the restitution coefficient e is 0.93 for steel spheres and
0.85 for glass spheres and � ¼ 3 is the number of degrees
of freedom per particle. The calculated fðzÞ, which is
indistinguishable from the numerical result in Fig. 6, and
� are in excellent agreement with the measured variation.
To summarize, the simple situation of flow around an

obstacle for a granular medium is complex giving rise to a
shock front whose properties are unlike those of molecular
gases. A dense region and large density gradients form
around the obstacle. This region grows denser and cooler
as the injection flux increases and has a well defined inter-
face with the gaseous region. This interface becomes
sharper as the volume fraction increases. The velocity
distributions are bimodal with non trivial variations versus
density and distance from the obstacle. Several features of
this shock front can be understood using a simple one
dimensional model based on granular kinetic theory along
with a simple ansatz on the separation of the particles into
two subpopulations but further theoretical work is needed
for a full understanding of shock fronts in granular flows.
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