
Self-Organization of Topological Defects due to Applied Constraints

Jonathan H. McCoy,1,* Will Brunner,2 Werner Pesch,3 and Eberhard Bodenschatz4,1,†

1Department of Physics, Cornell University, Ithaca, New York 14853, USA
2inXitu, inc., Mountain View, California 94043, USA

3Department of Physics, University of Bayreuth, D-95440 Bayreuth, Germany
4Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany

(Received 8 May 2008; published 19 December 2008)

While topological defects are essential to our understanding of self-organizing periodic systems, little is

known about how these systems respond when their defects are subjected to geometrical constraints. In an

experiment on spatially modulated thermal convection patterns, we observe that applied geometrical

constraints bind topological defects into robust self-localized structures that evolve through aggregation,

annihilation, and self-replication. We demonstrate that this unexpected cooperative response to the

modulation is a natural consequence of three generic elements: phase locking, symmetry breaking, and

spatial resonance. Our work provides new insights into the interplay between order, chaos, and control in

self-organizing systems.
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The self-organization of ordered structures is a recurring
theme in physics, chemistry, and biology [1–3]. Spatially
periodic patterns, in particular, are observed at length
scales ranging from the atomic to the astronomical. Self-
organized patterns are rarely perfect; topological defects,
such as dislocations and disclinations, are an intrinsic
element of their phenomenology [3,4]. Topological defects
have a spatially localized core region where the back-
ground pattern is torn, surrounded by a far-field region
where the pattern is only weakly distorted; like electric
charge, these topologically charged distortions can be de-
tected by measurements made on any loop (or surface)
enclosing their core [3,4]. These properties make topologi-
cal defects essential to our understanding of pattern selec-
tion, creep and yield phenomena, order-disorder transi-
tions, and the mechanisms underlying spatiotemporal
chaos [3–8]. This raises the interesting question of how
self-organizing systems respond when topological defects
are subjected to geometrical constraints, restricting their
formation and dynamics.

The formal connection between topological defects and
spontaneously broken symmetries [3,4] suggests that an
externally broken symmetry, e.g., a spatial modulation,
may be used to constrain defects. We find, in an experiment
on spatially modulated thermal convection, that con-
strained defects create a significant departure from the
standard pattern selection paradigm [3]. Weakly convect-
ing patterns are completely phase locked to the modula-
tion. This frustrates the system if the imposed pattern
would be unstable in the absence of modulation. Defect
nucleation generally provides the system with a means of
adjusting its wave vector field. Here, however, this selec-
tion mechanism is partially blocked and thus controlled by
the modulation. Instead of merely breaking up and/or
adjusting a spatially periodic state, defects enable the

modulated system to self-organize new types of periodic
structures. These structures, shown in Fig. 1, are crystalline
lattices embedded in a periodic background pattern. Some
of the lattices are ladderlike, extended in one direction and
strongly confined in another. Yet, as shown later, all are
constructed from a common reciprocal basis set. The for-
mation of such structures cannot be described using known
theoretical frameworks [9].
Our experiments illustrate how constrained defects can

cooperate in completely unexpected ways. Dislocations in
the pattern are pinned and their far-field distortions are
confined to spatially localized domains with zero net
charge, converting a geometrical constraint into a topologi-
cal one. The smallest possible structure produced by this
mechanism is a new type of charge neutral defect, a
localized orientational defect, which is never observed in
the absence of modulation. We interpret the localized

FIG. 1. A shadowgraph image of localized structures in a
spatially modulated thermal convection pattern (Ra� 1:9Rac).
Movies showing the spatiotemporal evolution of these structures
are available at Ref. [20].
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domains of Fig. 1 as crystalline aggregates of these orienta-
tional defects. As many papers have emphasized in recent
years, localized structures that are not topological in nature
can spontaneously appear and disappear [10–12], self-
replicate [11–13], and even aggregate to form molecular
clusters and crystals [13–16]. Our experiment offers the
first opportunity to observe these striking self-organization
behaviors in a setting where topological defects are the
essential dynamical agents. In this Letter, we demonstrate
that localization, crystalline order, and pattern-forming
dynamical motifs (aggregation, annihilation, and self-
replication) are natural consequences of three generic ele-
ments: phase locking, symmetry breaking, and spatial
resonance.

When a thin, horizontal fluid layer is driven out of
equilibrium by heating from below and cooling from
above, circulating spatially periodic flow patterns self-
organize; this buoyancy-driven flow, known as Rayleigh-
Bénard convection, is one of the archetypical examples of
pattern formation in nature [6]. The physics can be cap-
tured by three nondimensional parameters: the Rayleigh
number Ra, which is proportional to the applied tempera-
ture difference, compares the effects of buoyancy and
dissipation, the Prandtl number Pr compares viscous and
thermal diffusion, and the third parameter is the magnitude
of the pattern’s local wave vector k ¼ ðkx; kyÞ. Below a

universal critical value Rac, there is no fluid motion. For Ra
above Rac and fixed Pr, convection patterns are stable for k
lying within a well-characterized annulus in the wave
vector plane [3]. This annulus defines the preferred perio-
dicities of the system, even when the pattern is spatiotem-
porally chaotic [6]. In our experiment, we frustrate this
system by imposing a spatially periodic modulation with a
wave vector K0 lying close to but outside of the stability
annulus.

Our experiment was performed on a thin layer of com-
pressed SF6 gas, in an apparatus essentially identical to that
described in [17]. This layer was bounded above by an
optically-flat, single-crystal sapphire window, providing
optical access for pattern visualization, and bounded below
by an optically-flat silicon mirror. The temperatures of the
silicon and sapphire plates were regulated independently to
�0:0004 �C. The pressure was held constant at ð1:722�
0:030Þ MPa, regulated to �0:3 kPa, and the mean tem-
perature in the layer was held at ð21:00� 0:02Þ �C. Under
these circumstances, SF6 has Prandtl number Pr�0:9. We
introduced a permanent spatial modulation by microfabri-
cating a periodic array of parallel SU-8 polymer ridges on
the bottom plate. These ridges drive observable upflow of
fluid, forcing the pattern to phase lock to the imposed
periodicity [18]. The ridges were 65 �m high and
100 �m wide, with one ridge per mm. The thickness of
the layer, for comparison, was d ¼ ð596� 27Þ �m. The
characteristic thermal diffusion time for this layer, �v ¼
d2=�, where � is the thermal diffusivity of the gas, is
2.5 sec. Flow patterns were confined by a circular boundary

of diameter L ¼ 110d. The aspect ratio, � ¼ L=ð2dÞ, pro-
vides a characteristic time, �h ¼ �2�v ¼ 3025�v, associ-
ated with system-scale pattern relaxations [6]. Alter-
nation between warmer regions where gas is rising and
cooler regions where it is sinking sets up a spatially varying
index of refraction, which we visualize by passing colli-
mated monochromatic light through the fluid and imaging
the near-field diffraction pattern. This ‘‘shadowgraph’’
technique is described in detail elsewhere [17,19].
Our spatial modulation scheme breaks the rotational

isotropy and one of the two space translational symmetries
of the fluid layer. As a result, a convection pattern is present
even for Ra< Rac. Below �1:6Rac, the entire pattern is
spatially phase locked to the imposed modulation. Near
�1:6Rac, localized domains of obliquely-oriented stripes
begin to nucleate at the boundaries. These domains do not
grow to fill the bulk of the pattern. Instead, narrow sections
of stripes peel off from the boundaries and invade the bulk.
Over time, a perpetually reorganizing but steady-state
population of localized structures builds up in the bulk
[18]. The spatiotemporal evolution of these structures is
rapid compared to the system-scale relaxation time �h, but
slow compared to the thermal diffusion time �v [20]. This
separation of scales demonstrates that the boundaries have
only a weak influence on the bulk dynamics. We focus here
on the steady-state behavior observed away from the
boundaries at Ra� 1:9Rac. A typical pattern observed in
this regime is shown in Fig. 1. The localized structures in
these patterns have crystalline order but the dynamics are
spatiotemporally chaotic. To highlight this unusual twist on
the classic theme of order within chaos, we describe this
state as exhibiting crystalline chaos. A key feature, which
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FIG. 2 (color online). (a) Kink defect in a phase-locked pat-
tern. (b) Bravais lattice vectors connecting nearest neighbors in a
crystalline aggregate; as the kink defects are locked to the
modulation, the y component of each vector equals the modu-
lation wavelength �. (c) Contrast-enhanced histogram of the
corresponding reciprocal lattice basis vectors, showing the rela-
tionship of the dominant peaks K1 and K2 and the modulation
wave vector K0 ¼ ð0;�2�=�Þ to the stability annulus.
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is not observed in the absence of modulation [7], is con-
strained motion: the localized structures preferentially
slide back and forth along the phase-locked stripes, i.e.,
following the continuous translational symmetry that is not
broken by the modulation.

The phase-locked pattern described above has more
stripes per unit length than typical convection patterns. In
the absence of modulation this wavelength compression
triggers what is known as the skewed-varicose instability,
in which one or more stripes are pinched off, forming pairs
of dislocations which then separate, thereby removing
stripes from the pattern until the local wave number is
brought back inside the band of preferred periodicities
[6]. In our system, where the number and placement of
stripes is fixed by the modulation, this mechanism is
blocked. Instead, dislocations form cooperative groups
confining their far-field distortions to small domains with
no net topological charge. An orientational distortion of
only a single stripe across one wavelength of the modula-
tion [Fig. 2(a)] provides the smallest possible example of
one of these domains. We can understand these localized
orientational defects as follows. Dislocations in any stripe
pattern generally tend to be pinned by the stripes [3] and, in
our system, phase locking enhances this effect. When
dislocations are pinned in adjacent rows, as in Fig. 2(a)
(or its mirror image), a single kink (or antikink) is formed.
The dislocations forming a kink or antikink cannot sepa-
rate without creating a gap in the pattern or dislodging a
stripe from its locked position. By inhibiting motion, phase
locking provides the system with a new type of coherent
structure.

In systems supporting spot-shaped coherent structures,
spatially periodic patterns have been interpreted as crys-
talline aggregates of these structures [13,15,16]. Here, in
the same spirit, we regard the oblique domains of Fig. 1 as
mini crystals constructed from localized orientational de-
fects. The separation vectors connecting adjacent defects
provide a local estimate of a real space Bravais lattice basis
fR1;R2g for each localized crystalline domain [Fig. 2(b)].
This real space basis has a corresponding reciprocal space
basis fk1;k2g, defined by the standard relation ki �Rj ¼
2��ij (where �ij ¼ 1 for i ¼ j, and 0 otherwise) [4].

Fixing Ra at �1:9Rac and averaging results from 40 h of
data collection (57 600�v, where �v is the vertical diffusion
time), we find that these reciprocal basis vectors are sta-
tistically concentrated around two locations K1;2 ¼
ð�kx; kyÞ (and their additive inverses), shown in Fig. 2(c)

together with the modulation wave vector K0.
The relationships emerging from this analysis are highly

illuminating. First, we find that the dominant reciprocal
basis vectors, K1 and K2, fall well inside the annulus
describing the wave vectors of stable stripe patterns in
the absence of modulation. Moreover, we find that ky is

equal to one half of the modulation wave number jK0j and,
therefore, the reciprocal basis vectors satisfy a spatial
resonance condition, K0 þK1 þK2 ¼ 0. This condition

can, in fact, be derived a priori from the kink/antikink
picture: for any left-right symmetric basis R1;2 ¼ ð�a; �Þ,
locked to the modulation as in Fig. 2(b), the standard
relation Ki �Rj ¼ 2��ij leads to K1;2 ¼ 2�ð��; aÞ=
ð2�aÞ and, given this, K1 þK2 automatically equals
�K0 ¼ ð0; 2�=�Þ. Note that the parameter a and its con-
jugate in reciprocal space, kx ¼ �=a (obtained from the
calculation above), are not fixed by the modulation. This
free parameter manifests the system’s remaining space
translational symmetry, parallel to the modulation stripes.
By exploiting this freedom, the pattern can use the reso-
nance condition to select crystalline structures with pre-
ferred periodicities. Though this condition favors neither
K1 nor K2, each striped crystal chooses a dominant ori-
entation. This broken reflection symmetry finds a natural
explanation in our approach, since the building blocks of
each crystal must choose one of two orientations related by
a reflection [Fig. 2(a) and its mirror image]. Likewise,
since each of these building blocks is associated with a
single background stripe, translational confinement of the
dynamics becomes a direct consequence of phase locking
and broken translational symmetry.
We emphasize that, while crystallization of coherent

structures is observed in a variety of pattern-forming sys-
tems, our system has the provocative feature that its local-
ized structures emerge from the (restricted) dynamics of
topological defects. An aggregation event in which two
crystalline chains of antikinks lock together to form a
longer chain, observed experimentally, is shown sequen-
tially in Figs. 3(a)–3(c). When these chains first come into
contact one pair of dislocations is rapidly annihilated,
leaving the net charge unchanged. The reverse process,
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FIG. 3 (color online). Time series of shadowgraph images
showing (a)–(c) an aggregation event, in which two chains of
antikinks (circled in cyan) approach and lock together to form a
longer chain, (d)–(f) an annihilation event, in which chains of
kinks (circled in magenta) and antikinks (circled in cyan) vanish
from the pattern through pairwise cancellations, and (g)–(i) a
self-replication event, in which new kinks (circled in magenta)
are added at adjacent lattice sites in a crystalline domain. Movie
versions of these time series are available at Ref. [20].
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which fractures larger crystals to form smaller ones by
creating and separating a new pair of dislocations, is
commonly observed as well. The creation or annihilation
of a dislocation pair typically requires only a few �v. Thus,
the time scales shown in Fig. 3 reflect the robustness that
kinks, antikinks, and their aggregates inherit from the
modulation. Localized orientational defects of opposite
type can also annihilate, returning stripes to their phase-
locked positions. Figures 3(d)–3(f) show an annihilation
event in which a V-shaped domain contracts through pair-
wise cancellation of kinks and antikinks. This process, like
aggregation, conserves charge and is reversible. The re-
verse process is quite rare, however, and only occurs in the
immediate vicinity of existing kinks and antikinks. This
observation suggests that there is an energy barrier asso-
ciated with the formation of these structures and that
proximity to existing structures lowers this barrier.

Though topological charge is conserved, the relative
sizes of the kink and antikink subpopulations fluctuate.
The process responsible for this fluctuating asymmetry is
a jump of a dislocation from one pinning site to a neigh-
boring site; these glide motions are inhibited, as mentioned
earlier, but they do occur and are important for the dynam-
ics. When the two dislocations forming a localized orienta-
tional defect jump apart, inserting an extra row of the
modulation between them, the result of this jump is the
formation of an extra localized orientational defect of
the same type. This self-replication process allows crystals
to expand or contract in discrete steps, as shown in
Figs. 3(g)–3(i), and allows the lateral boundaries of the
pattern to absorb and emit these structures. This behavior is
distinct from other examples of self-replication, such as the
cell-division and self-completion behaviors observed in
reaction-diffusion systems [11–13], in that it has a topo-
logical origin.

In this Letter, we have presented a completely new local-
ization mechanism native to spatially modulated pattern-
forming systems. This mechanism illustrates how, even
when individual dislocations are heavily constrained,
groups of dislocations may still be free to self-organize
and, indeed, acquire a broader palette of generic behaviors
to choose from. In this way, applied constraints can both
control the emergence of spatiotemporal chaos and make
new pattern selection mechanisms possible. In principle,
kinks, antikinks, and their aggregates may arise in any
spatially modulated stripe-forming system, particularly
those which are modeled by Swift-Hohenberg equations
[3,9]. Generalizations of these structures may thus arise in
layer-forming systems, such as surfactant lamellae, smec-
tics, and block copolymers, or ecological applications [21].
We hope that our emphasis on the basic concepts of phase
locking, symmetry breaking, and spatial resonance, rather
than system-specific details, will prove useful to other
researchers exploring the consequences of spatial forcing

and will motivate theoretical studies of this localization
phenomenon.
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