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We present an algorithm to simulate two-dimensional quantum lattice systems in the thermodynamic

limit. Our approach builds on the projected entangled-pair state algorithm for finite lattice systems [F.

Verstraete and J. I. Cirac, arxiv:cond-mat/0407066] and the infinite time-evolving block decimation

algorithm for infinite one-dimensional lattice systems [G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)].

The present algorithm allows for the computation of the ground state and the simulation of time evolution

in infinite two-dimensional systems that are invariant under translations. We demonstrate its performance

by obtaining the ground state of the quantum Ising model and analyzing its second order quantum phase

transition.
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Strongly interacting quantum many-body systems are
of central importance in several areas of science and tech-
nology, including condensed matter and high-energy phys-
ics, quantum chemistry, quantum computation and
nanotechnology. From a theoretical perspective, the study
of such systems often poses a great computational chal-
lenge. Despite the existence of well-established numerical
techniques, such as exact diagonalization, quantum
Monte Carlo calculations [1], the density matrix renormal-
ization group [2], or series expansion [3] to mention some,
a large class of two-dimensional lattice models involving
frustrated spins or fermions remain unsolved reported in
Ref. [4] (see Table I).

Fresh ideas from quantum information have recently led
to a series of new simulation algorithms based on an
efficient representation of the lattice many-body wave
function through a tensor network. This is a network
made of small tensors interconnected according to a pat-
tern that reproduces the structure of entanglement in the
system. Thus, a matrix product state (MPS) [5], a tensor
network already implicit in the density matrix renormal-
ization group, is used in the time-evolving block decima-
tion (TEBD) algorithm to simulate time evolution in one-
dimensional lattice systems [6], whereas a tensor product
state [4] or projected entangled-pair state (PEPS) [7] is
the basis to simulate two-dimensional lattice systems. In
turn, the multiscale entanglement renormalization ansatz
accurately describes critical and topologically ordered sys-
tems [8].

In this work we explain how to modify the PEPS algo-
rithm of Ref. [7] to simulate two-dimensional lattice sys-
tems in the thermodynamic limit. By addressing an infinite
system directly, the infinite PEPS (iPEPS) algorithm can
analyze bulk properties without dealing with boundary
effects or finite-size corrections. This is achieved by gen-
eralizing, to two dimensions, the basic ideas underlying the

infinite TEBD (iTEBD) [9]. Namely, we exploit transla-
tional invariance (i) to obtain a very compact PEPS de-
scription with only two independent tensors and (ii) to
simulate time evolution by just updating these two tensors.
We describe the essential new ingredients of the iPEPS
algorithm, which is based on numerically solving a transfer
matrix problem with an MPS. We then use it to compute
the ground state of the quantum Ising model with trans-
verse magnetic field, evaluate local observables, identify
the critical point of its second order quantum phase tran-
sition and estimate the critical exponent �.
We point out that the algorithms of Ref. [4] have already

addressed the computation of the ground state of infinite
two-dimensional systems, by analyzing an infinite transfer
matrix problem with a MPS. A major difference in our
approach is how this is handled. Instead of DMRG tech-
niques (which consider an increasingly large chain with a
finite MPS), we use the iTEBD algorithm [9], based on a
power method that uses an infinite MPS (iMPS) from the
start. This seems to significantly improve the results re-
ported in Ref. [4].
Finite PEPS algorithm.—We start by recalling some

basic facts of the PEPS algorithm for a finite system [7].
Consider a two-dimensional lattice L where each site,
labeled by a vector ~r, is represented by a Hilbert space

V½ ~r� ffi Cd of finite dimension d, so that the Hilbert space of

the lattice is VL ¼ N
~r2LV

½ ~r�. For concreteness, we ad-
dress the case of a square lattice, with N � N sites labeled
by a pair of integers ~r ¼ ðx; yÞ, x; y ¼ 1; � � � ; N. [However,
the key ingredients of the algorithm for infinite systems to
be considered here are still valid for any type of regular
lattice.] The model is further characterized by a

Hamiltonian H ¼ P
~r1; ~r2

h½~r1 ~r2� that decomposes as a sum

of terms h½ ~r1 ~r2� involving pairs of nearest neighbor sites
~r1; ~r2 2 L. A pure state j�i 2 VL of the lattice is repre-
sented by a PEPS, namely, a set of N � N tensors
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fA½ ~r�g~r2L, interconnected into a network P that follows the

pattern ofL (Figs. 1(a) and 1(b)). Tensor A½ ~r�
sudlr is made of

complex numbers labeled by one physical index s and four
bond indices u, d, l and r. The physical index runs over a

basis fjsigs¼1;���;d of V½~r�, whereas each bond index takes D
values and connects the tensor with the tensors in nearest
neighbor sites. Thus, j�i is written in terms of OðN2D4dÞ
parameters, from which the dN complex amplitudes
hsð1;1Þsð1;2Þ � � � sðN;NÞj�i can be recovered by fixing the

physical index of each tensor A½~r� in P and by contracting
all the bond indices.

Given a PEPS for some state j�0i 2 VL, the algorithm
of Ref. [7] allows to perform, e.g., the following two tasks:
(i) computation of expected values h�0jOj�0i for a local
operator O, such as the energy, a local order parameter or
two-point correlators, and (ii) update of the PEPS after a

gate g½~r1 ~r2� has been applied on two nearest sites ~r1, ~r2 2
L. The second task can be used to simulate an evolution
according to Hamiltonian H, both in real time and in
imaginary time,

j�ti ¼ e�iHtj�0i; j��i ¼ e�H�j�0i
jje�H�j�0ijj ; (1)

in the sense of obtaining a new PEPS representation that
approximates the states j�ti and j��i. This is achieved by
breaking the evolution operators e�iHt and e�H� into a
sequence of local gates, using a Suzuki-Trotter expansion
[10], and by updating the PEPS after applying each of these
gates. In particular, one can approximate the ground state
of Hamiltonian H through simulating an evolution in
imaginary time for large time �, starting from a product
state j�0i (for which a PEPS can be trivially constructed).

Let E denote the network made by the N � N reduced

tensors a½ ~r� (Figs. 1(c) and 1(d)),

a½ ~r�
�u �d �l �r

� X

s

A½~r�
sudlrðA½ ~r�

su0d0l0r0 Þ�; (2)

where �u represents the double bond index (u, u0) and the
physical index s has been contracted, and let ~r1, ~r2 2 L
denote two nearest neighbor sites. Then the environment

E½ ~r1; ~r2� for these two sites is the network obtained by

removing the tensors a½ ~r1� and a½ ~r2� from E. By ‘‘contract-
ing a tensor network’’ we mean ‘‘summing over all the
indices that connect any two tensors of the network’’. It
turns out that both (i) the computation of an expected value

h�jO½ ~r1; ~r2�j�i and (ii) the update of the PEPS after a gate

g½ ~r1 ~r2� can be achieved by contracting E½ ~r1; ~r2�. However, the
cost of this contraction grows exponentially with N. The
core of the PEPS algorithm [7] is an approximate, efficient

(quadratic in N) scheme to contract E½~r1; ~r2�, based on MPS
simulation techniques.
Infinite PEPS algorithm.—In order to consider the limit

of an infinite lattice, N ! 1, where both j�i and H are
invariant under shifts by one lattice site, we need to under-
stand how to efficiently contract an infinite environment

E½ ~r1; ~r2�. Translational invariance allows us to represent the
state j�i in terms of only two tensors A and B that are
repeated indefinitely in P (Fig. 1) [11],

A½ðx;xþ2yÞ� ¼ A; A½ðx;xþ2yþ1Þ� ¼ B; x; y 2 Z; (3)

so that the iPEPS depends on just OðD4dÞ coefficients.

Notice that E½ ~r1; ~r2� is also made of infinitely many copies of
just two reduced tensors a and b, defined in terms of A and
B according to Eq. (2). Then its contraction is achieved in
two steps, as illustrated in Fig. 2: first we approximate

E½ ~r1; ~r2� with an infinite strip F ½~r1; ~r2�; then we approximate

F ½~r1; ~r2� with a small set of tensors G½~r1; ~r2� ¼ fG1; � � � ; G6g.
This can be achieved using a vertical or horizontal scheme
or a diagonal scheme as illustrated in Figs. 2 and 3.
The first step considers a transfer matrix R consisting of

an infinite strip of reduced tensors a and b (Fig. 3). R can
be regarded as a linear operator acting on an infinite chain
where each site is described by a vector space of dimension
D2. Let j�i denote the dominant eigenvector of R—that is,
the eigenvector of R, Rj�i ¼ �j�i, with the eigenvalue �
of largest absolute value. Here we assume that the domi-
nant eigenvector is unique [12]. By construction R is
invariant under shifts by two sites of the infinite chain—
and so is j�i. We use an iMPS, characterized by just two
tensors fC;Dg and with Schmidt rank �, to represent an
approximation of j�i. We obtain this iMPS by simulating
(repeated) multiplication by R on an initial state j�0i with
the iTEBD algorithm [9] and by using the fact that

FIG. 1 (color online). Diagrammatic representations of (a) a
PEPS tensor Asudlr with one physical index s and four inner
indices u, d, l and r; (b) local detail of the tensor network P for
an iPEPS. Copies of tensors A and B are connected through four
types of links; (c) reduced tensor a of Eq. (2); and (d) local detail
of the tensor network E.

TABLE I. Critical point and exponent � as a function of D.

Method �c �

QMC Ref. [14] 3.044 0.327

D ¼ 2 iPEPS 3.10 0.346

D ¼ 3 iPEPS 3.06 0.332

D ¼ 3 VDMA Ref. [4] 3.2 � � �
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j�i ¼ lim
p!1

Rpj�0i
jjRpj�0ijj : (4)

The iMPS for j�i accounts for an infinite half plane of the
environment E½ ~r1; ~r2�. Similarly, we use another iMPS with
tensors fC0; D0g to encode the left dominant eigenvector
h�0j of R, h�0jR ¼ �h�0j, which also accounts for an

infinite half plane. Then F ½ ~r1; ~r2� is built from these two
iMPS and a strip of reduced tensors a and b.

In the second step, a transfer matrix S is defined in terms
of the tensors fa; b; C;D; C0; D0g (Fig. 3). S can be regarded
as a linear operator acting on three sites with local vector

space dimensions �, D2 and �. Again, its dominant eigen-
vector j�i, encoded in a three-legged tensor X, is com-
puted from an initial state j�0i using the fact that

j�i ¼ lim
q!1

Sqj�0i
jjSqj�0ijj : (5)

Let X0 be the tensor for the left dominant eigenvector h�0j
of S. Then G½ ~r1 ~r2� is a (circular) MPS consisting of the six
tensors fC;D;C0; D0; X; X0g.
Simulation of time evolution.—We decompose the

Hamiltonian as H ¼ Hr þHd þHl þHu, where the op-

erator Hr ¼
P

ð ~r1; ~r2Þrh
½ ~r1 ~r2� collects all interactions along

r-links (and similarly for d-, l- and u-links), and consider
a Suzuki-Trotter expansion of the time-evolution operator
e�iHt of Eq. (1) in terms of operators e�iHr�t, e�iHd�t,
e�iHl�t and e�iHu�t, where �t is some small time step.
Each of these operators further decomposes into a product
of identical two-site unitary gates g � e�ih�t acting on all
pairs of sites connected by a link of the proper type. For
instance, for links of type r we have

e�iHr�t ¼ Y

ð ~r; ~r0Þr
g½ ~r~r0�: (6)

Without loss of generality, we need to address only the
update of tensors A and B after applying e�iHr�t to j�i. Let
us assume that the gate g is applied on just one of the r
links. In that case, in order to update the iPEPS we would
(i) compute the environment for that specific r link follow-
ing Figs. 2 and 3, and (ii) determine the optimal new
tensors A0 and B0 for the link, using the optimization
techniques of [7] (sweeping over just the two sites in-
volved). We notice, however, that the above A0 and B0
already define an iPEPS for e�iHr�j�i—that is, with gates
g acting on all r links. Indeed, this follows from translation
invariance and the fact that a unitary gate g on a given r
link does not affect the environment on any other r link. In
other words, the update of tensors A and B on each r link is
identical and need only be performed once.
The above argumentation fails for an evolution e�H� in

imaginary time, since the gate g0 � e�h�� is no longer
unitary. In this case, a gate applied on, say, an r link
modifies the environment on the rest of the r links.
Nevertheless, as in one-dimensional systems [9], the
same algorithm can still be used to find the ground state
of the system through imaginary-time evolution, provided
that a sufficiently small �� (leading to almost unperturbed
environments) is used at the last stages of the simulation.
Quantum phase transition.—To demonstrate the per-

formance of the iPEPS algorithm, we have simulated an
evolution in imaginary time to obtain the ground state j��i
of the quantum Ising model with transverse magnetic field,

Hð�Þ � �X

ð ~r; ~r0Þ
�½~r�

z �½~r0�
z � �

X

~r

�½ ~r�
x : (7)

Then we have computed the energy per site e and
the transverse and parallel magnetizations mx and mz

FIG. 3 (color online). Transfer matrices R (a) and S (b) for the
vertical or horizontal contraction scheme. Multiplication of an
iMPS by R using the iTEBD algorithm comes at a computational
time that scales as Oð�3D6 þ �2D8dÞ (similar costs apply to
multiplying by S). This cost is lower in diagonal contraction
scheme (c) and (d), namely Oð�3D4 þ �2D6dÞ, but a slightly
larger � is required in order to retain the same accuracy.

FIG. 2 (color online). The environment E½ ~r1 ; ~r2� for a link of
type r is first approximated by an infinite strip F ½~r1; ~r2� and then
by a six-tensor network G½~r1; ~r2�. These reductions can be per-
formed according to either a vertical or horizontal scheme (b) or
a diagonal scheme (c). Tensors A, A?, B, and B? are not part of
the environment.
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(Figs. 4(a) and 5),

mxð�Þ ¼ h��j�xj��i; mzð�Þ ¼ h��j�zj��i; (8)

and the two-point correlator SzzðlÞ [Fig. 4(b)]
SzzðlÞ � h��j�½ ~r�

z �½ ~rþlêx�
z j��i � ðmzÞ2: (9)

Comparison with series expansion results of Ref. [13]
shows remarkable agreement for all local observables on
both sides of the critical point, which Monte Carlo calcu-
lations [14] indicate to be at magnetic field �MC � 3:044.
We also obtain accurate estimates of the critical mag-
netic field �c and critical exponent �, which for D ¼ 2
andD ¼ 3 agree with Monte Carlo results within 5.8% and
1.5%, respectively.

In conclusion, we have presented an algorithm to simu-
late infinite two-dimensional lattice systems. We have
tested its performance in the context of the quantum
Ising model, where our results can compete quantitatively

with those obtained using long-established methods,
such as quantum Monte Carlo [1] or perturbative series
expansions [3]. The iPEPS algorithm can now be applied
to address problems beyond the reach of quantum
Monte Carlo (since it has no sign problem) and series
expansion methods (since it does not rely on an expansion
around an exactly solvable model). Thus, we expect it to
become a useful new tool in the study of strongly interact-
ing lattice models.
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FIG. 5 (color online). Magnetization mzð�Þ as a function of the
transverse magnetic field �. Dashed lines are a guide to the eye.
We have used the diagonal scheme for ðD;�Þ ¼ ð2; 20Þ, (3,25)
and (4,35) [15] (the vertical or horizontal scheme leads to
comparable results with slightly smaller �.) The inset shows a
log plot of mz versus j�� �cj, including our estimate of �c and
�. The continuous line shows the linear fit.

FIG. 4 (color online). (a) Transverse magnetization mx and
energy per site e as a function of the transverse magnetic field
h. The continuous line shows series expansion results (to 26th
and 16th order in perturbation theory) for h smaller and larger
than hc � 3:044 [13]. Increasing D leads to a lower energy per
site e. For instance, at h ¼ 3:1, eðD ¼ 2Þ � �1:6417 and eðD ¼
3Þ � �1:6423. (b) Two-point correlator SzzðlÞ near the critical
point, � ¼ 3:05. For nearest neighbors, the correlator quickly
converges as a function of D, whereas for long distances we
expect to see convergence for larger values of D.
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