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We study the appearance of correlated many-body phenomena in an ensemble of atoms driven

resonantly into a strongly interacting Rydberg state. The ground state of the Hamiltonian describing

the driven system exhibits a second order quantum phase transition. We derive the critical theory for the

quantum phase transition and show that it describes the properties of the driven Rydberg system in the

saturated regime. We find that the suppression of Rydberg excitations known as blockade phenomena

exhibits an algebraic scaling law with a universal exponent.
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The concept of universality is a powerful tool for the
understanding and characterization of complex phenomena
in different fields of physics. The most pronounced ex-
ample represents the universal scaling in systems close to a
second order phase transition and the characterization of
the transition in terms of critical theories and universality
classes [1]. Its main assertion is that in the presence of a
diverging length scale, physical observables become inde-
pendent on the precise microscopic realization of the sys-
tems, and allows for a qualitative understanding without
the knowledge of the exact microscopic details. In this
Letter, we analyze the appearance of correlated many-
body effects in a dense ensemble of atoms driven reso-
nantly in a strongly interacting Rydberg state, and show
that the behavior of the system can be understood in terms
of a critical theory.

Strongly interacting Rydberg atoms are an area of in-
tense experimental investigation: the resonant diffusion of
Rydberg excitations via the dipole-dipole interactions has
been reported [2], and the reduction of Rydberg excitation
due to blockade effects has been observed [3–8].
Furthermore, coherent optical excitation has been observed
for individual Rydberg atoms [9], essentially noninteract-
ing ensembles [10–12], as well as in the strongly interact-
ing regime [7]. Of special interest for the theoretical
analysis are cold atomic samples, where the thermal mo-
tion of the atoms is essentially frozen on the characteristic
time scale of the Rydberg excitation (‘‘frozen Rydberg
gas’’) [2]. Then, the time evolution of such an atomic
ensemble driven by a resonant Rydberg excitation has
been extensively studied in the past using a numerical
integration of the time-dependent Schrödinger equation
for small sample sizes [13,14] and within a master equation
approach [15,16].

In contrast to the previous analyses studying the time
evolution, the approach for the study of strongly interact-
ing Rydberg gases presented in this Letter is based on the
observation that the driven system relaxes into an equilib-
rium state. This equilibrium state is dominated by the
thermodynamic phases of the Hamiltonian describing the

driven system, which exhibits a continuous quantum phase
transition in the detuning �; see Fig. 1(a). Then, the
resonant regime with � ¼ 0 is determined by the critical
properties of the phase transition. We derive the universal
exponents within mean-field theory, and show that the time
evolution of the system and its relaxation into the equilib-
rium state is well described by a master equation derived
from the microscopic Hamiltonian.
We start with the Hamiltonian describing an ultracold

gas of atoms driven into an excited Rydberg state with a
repulsive van der Waals interaction. The relevant internal
structure for each atom is given by the atomic ground state
jgii and the excited Rydberg state jeii, reducing the inter-
nal structure to a two-level system. The two internal states
are coherently coupled by external lasers with the Rabi
frequency � and a detuning �; see Fig. 1(b). The charac-
teristic time scale for a Rydberg excitation is short com-
pared to the thermal motion of each atom, and the positions
ri of the atoms are frozen [2]: the positions ri are randomly
distributed according to the distribution function of a ther-

FIG. 1 (color online). (a) Phase diagram in the �-�-plane: for
a coupling� ¼ 0 a second order phase transition appears from a
crystalline phase (C) to a paramagnetic phase (PM), while at a
detuning � ¼ 0 the system is dominated by the critical region.
(b) Setup of the system with jgi the atomic ground state and jei
the excited Rydberg state coupled by driving lasers with Rabi
frequency � and detuning �.
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mal gas. After performing the rotating wave approxima-
tion, the Hamiltonian in the rotating frame can be written
as a spin Hamiltonian (cf. [13])

Ĥ ¼ ��

2
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�̂ðiÞ
z þ @�
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X
i

�̂ðiÞ
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X
j<i

P̂ðiÞ
eeP̂

ðjÞ
ee

jri � rjj6
; (1)

where P̂ðiÞ
ee ¼ jeiiheji ¼ ð1þ �̂ðiÞ

z Þ=2 is the projector onto
the excited Rydberg state of the ith atom. The last term
accounts for the strong van der Waals repulsion between
the Rydberg states with C6 / �n11, where �n is the principle
quantum number of the Rydberg excitation [17,18]. It is
well known that dense samples of Rydberg atoms undergo
collective ionization processes that might harm the coher-
ent evolution [19]. However for repulsive Rydberg S states
these ionization processes are slowed down significantly
[20]. Recent experiments in very dense samples allowed to
follow the coherent evolution involving Rydberg S states
on time scales comparable to the timescales required to
reach equilibrium [6,7]. In these experiments the saturation
is reached well before radiative or motional decoherence
effects set in. Therefore the validity of the Hamiltonian (1)
is well justified for an experimentally realistic situation.

Within the standard experimental setup, the system is
prepared with all the atoms in the ground state and the time
evolution is studied by turning on the excitation lasers, i.e.,
jc i ¼ Q

ijgii. While in absence of interactions, the time
evolution of the Hamiltonian (1) results in coherent Rabi
oscillations for each atom with the reduced density matrix
for each atom being a pure state, the interactions leads to
correlations between different atoms, and eventually to a
decoherence of this single atom pure state. Consequently,
the density matrix describing a subsystem of the atomic
cloud will equilibrate into a steady state under time evo-
lution as the surrounding atomic states act as a reservoir
interacting with the subsystem. This behavior is well con-
firmed by the exact numerical integration of the system
with the Hamiltonian (1), see below, and is also observed in
experiments via the saturation of the Rydberg excitation
[6]. This observation opens up an alternative approach to
study the long-time behavior of the system by focusing on
the equilibrium states of the Hamiltonian (1), and espe-
cially on its zero temperature phase diagram.

For vanishing Rabi frequency � ¼ 0, the exact ground
state of the Hamiltonian (1) can be analytically determined
in any dimension. It is dominated by a second order
quantum phase transition for the critical detuning �c ¼
0; see Fig. 1. For negative detuning � � 0 the ground
state is paramagnetic with all atoms in the atomic state
jgii; i.e., the experimentally relevant initial state jc i is the
ground state of the system. In turn for positive detuning
�> 0, the ground state prefers to excite atoms into the
Rydberg state and the configuration minimizing the repul-
sive van der Waals interaction is obtained for a crystalline
arrangement of the atoms. It is important to notice, that
within the critical region the system is independent on the

microscopic realization, and therefore, its properties are
isotropic and homogeneous.
The behavior of the system for finite � in the resonant

regime � ¼ 0 is dominated by the critical behavior of the
second order quantum phase transition. At the critical point
with � ¼ 0, the system is characterized by a single dimen-
sionless parameter � ¼ @�=C6n

2 describing the ratio be-
tween the coupling energy @� and the interaction energy
C6n

2 (here, n denotes the atomic density). Then, the
ground state properties such as the fraction of excited
Rydberg atoms exhibit an algebraic behavior

fR � hPðiÞ
eei ¼ c��; (2)

with a universal scaling exponent � in the critical region
with � � 1. In the following, we determine the critical
exponent within mean-field theory.
The important quantity in the mean-field theory is the

averaged Rydberg fraction fR ¼ hPðiÞ
eei. In addition, the van

der Waals interaction gives rise to blockade phenomena;
i.e., once a Rydberg state is excited the excitation of an
additional Rydberg atom is strongly suppressed in the
surrounding area characterized by a blockade radius aR.
The correct description of this property is obtained by the

pair-correlation function g2ðri � rjÞ ¼ hP̂ðiÞ
eeP̂

ðjÞ
ee i=f2R,

where g2ðrÞ vanishes in the blockaded region for jrj �
aR, while at large distances jrj � aR the correlation dis-
appears and g2ðrÞ ¼ 1. The transition from a strong sup-
pression to the uncorrelated regime is very sharp due to the
van der Waals repulsion [13], and the pair-correlation
function is well described by a step function g2ðrÞ ¼
�ðjrj � aRÞ. Then, the mean-field theory is obtained by
replacing the microscopic interaction by the mean interac-
tion of the surrounding atoms

P̂ ðiÞ
eeP̂

ðjÞ
ee � ½P̂ðiÞ

eefR þ P̂ðjÞ
eefR � f2R�g2ðri � rjÞ; (3)

which neglects the quadratic fluctuations around the mean
field and reduces the Hamiltonian to a sum of single site

Hamiltonians, Ĥ ¼ P
iĤ

ðiÞ
MF. In the scaling regime with

� � 1, the number of atoms in the blockaded regime is
large, i.e., a3Rn � 1, which allows us to replace the sum-
mation over the surrounding atoms j by an integral over
space with a homogeneous atomic density n. Then, we
obtain the Hamiltonian for the ith atom,

ĤðiÞ
MF

E0

¼ �

2
�̂ðiÞ

x þ 4�

3

fR
na3R

P̂ðiÞ
ee � 2�

3

f2R
na3R

¼ h � �̂ðiÞ þ h0:

(4)

with the characteristic energy scale E0 ¼ C6n
2. Note that

in equilibrium the correlation function g2ðrÞ satisfies the
normalization condition nfR

R
dr½1� g2ðrÞ� ¼ 1, which

provides the relation aR ¼ ð3=4�fRnÞ1=3. The effective
Hamiltonian is equivalent to a spin in a magnetic field h
with hx ¼ �=2 and hz ¼ 8�2f2R=9, and a constant energy
offset h0 ¼ hzð1� fRÞ. Using a spin rotation, we can
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diagonalize the Hamiltonian ĤðiÞ
MF ¼ h�̂ðiÞ

z0 þ h0 with h ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x þ h2z

q
. Here, �̂ðiÞ

z0 ¼ cos��̂ðiÞ
z þ sin��̂ðiÞ

x denotes the

Pauli matrix in the new basis with the rotation angle
tan� ¼ hx=hz. Within the new basis the stationary equilib-

rium density matrix �̂ðiÞ is diagonal. Its entries dependent
on the experimental realization of the system: (i) for an
adiabatic switching on of the Rabi frequency, the system
remains in the ground state and the density matrix reduces

to the lowest energy state of ĤðiÞ
MF. (ii) on the other hand, for

a sudden switching on of the Rabi frequency, the density
matrix is determined by energy conservation: the energy of
the equilibrated state is equal to the energy of the initial

state, i.e., TrfĤðiÞ
MF�̂

ðiÞg ¼ hc jĤjc i=N ¼ 0 (here, N de-
notes the total number of particles). It can be checked
that the scaling exponent remains the same in both cases,
indicating that the equilibrium state in the second case is
close to the ground state. In the following, we focus on a
sudden switching on of the Rabi frequency. The mean-field

solution for the equilibrium state reduces to �̂ðiÞ ¼ ½1�
ðh0=hÞ�̂ðiÞ

z0 �=2, and a transformation into the original coor-

dinates yields the self-consistency relation

fR ¼ hP̂ðiÞ
eei ¼ 1

2

ð4�Þ4f5R þ ð9�Þ2
ð4�fRÞ4 þ ð9�Þ2 : (5)

The solution in the limit � � 1 provides the critical ex-

ponent � ¼ 2=5 with the prefactor c ¼ ð9=16�2Þ2=5.
The same mean-field analysis can also be performed for

arbitrary dimensions d � 4. The main modification is that

the dimensionless parameter �d ¼ @�=C6n
6=d exhibits a

dependence on the dimension d and also hz obeys the

modified scaling hz 	 f6=dR . The general result provides
the scaling exponent �d ¼ 2d=ð12þ dÞ.

We now compare the above mean-field solution to nu-
merical studies of the time evolution with the full
Hamiltonian Eq. (1). We place N atoms randomly into a
box of volume V having periodic boundary conditions. The
dimension of the full Hilbert space grows exponentially
like 2N; therefore, the exact dynamics can only be calcu-
lated for a relatively small number of atoms [13,21].
However, the strong van der Waals repulsion suppresses
the occupation probabilities of many basis states, which
allows us to significantly reduce the Hilbert space: for each
basis state we compute the van der Waals energy and
remove the state if its van der Waals energy is larger than
a cutoff energy EC. This reduction leads for N ¼ 100 to
approximately 106 relevant basis states compared to the
1030 basis states of the full Hilbert space. Convergence has
been checked by increasing EC. We have used a fourth-
order Runge-Kutta scheme for performing the numerical
integration of the Schrödinger equation. The time-
dependence of the Rydberg fraction fRðtÞ ¼ P

ihPi
eei=N

is shown in Fig. 2 (crosses), for an average of 50 different
uniformly distributed random initial conditions with N ¼
60 and � ¼ 1=36. We find a clear saturation of the excited

Rydberg fraction fR; the remaining oscillations at large
times are further suppressed for larger system sizes, and
therefore represent a finite size effect.
In order to investigate the scaling behavior of the satu-

rated Rydberg fraction fR we have taken an average over
the Rydberg fraction fRðtÞ for times 250 � tC6n

2=@ �
400 for 50 different random initial conditions. The dimen-
sionless parameter � has been varied by changing the
number of atoms from N ¼ 52 to N ¼ 100, and by chang-
ing C6 from 0.01 to 0.04. The scaling behavior is shown in
Fig. 3. The data show a power law dependence according to
fR ¼ c��. The fit to the numerical data provides an ex-
ponent � ¼ 0:404, which is in very good agreement with
the result derived in the mean-field theory. For the one-
dimensional case the numerically obtained critical expo-
nent is �1D ¼ 0:150. Surprisingly, this value is again very
close to the mean-field prediction, indicating that the
van der Waals interaction strongly suppresses quantum
fluctuations.
Finally, we are interested in a description of the time

evolution and derive a master equation with the mean-field
solution as its stationary state. The natural mechanisms for
the equilibration into a stationary state are the residual

FIG. 2 (color online). Numerical integration of the full
Hamiltonian (crosses) for � ¼ 1=36, N ¼ 60 and averaged
over 50 different initial conditions. The remaining oscillations
at large times are finite size effects. The solution of the master
equation is shown as solid line.

FIG. 3 (color online). Numerical results for the saturated
Rydberg fraction fR in a 3D and a 1D setup: the system exhibits
an algebraic behavior fR 	 �� with � � 0:404 and �1D �
0:150.
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interactions between the atoms, which go beyond the
mean-field description. We write the exact Hamiltonian
(1) as a sum of the mean-field terms and the remaining

fluctuations Ĥ ¼ P
iĤ

ðiÞ
MF þ�Ĥ. The derivation of the

master equation from the microscopic Hamiltonian uses
the time-convolutionless projection operator method with
an extended projection operator [22]: we select a single site
i, which will play the role of the system with the

Hamiltonian ĤðiÞ
MF, while the surrounding atoms act as the

bath coupled to the system state by the Hamiltonian �Ĥ.
The role of the pair-correlation function is to enforce the
blockade regime. Here, we assume the pair-correlation
function to be fixed during the time evolution. Then, its
influence is well accounted for by expressing the remaining

interactions as �Ĥ ¼ P
i<jg2ðri � rjÞC6=jri � rjj6ðP̂ðiÞ

ee �
fRÞðP̂ðjÞ

ee � fRÞ. The projection operator consistent with our
mean-field theory, i.e., P�Ĥ �̂ ¼ 0 reduces to P �̂ ¼N

i�̂
ðiÞ. Here, �̂ðiÞ denotes the reduced density matrix de-

fined by the partial trace �̂ðiÞ ¼ Trif�̂g, which performs the
trace over all atomic states except of the ith atom. Next, it

is useful to express the operator P̂ðiÞ
ee ¼ ÂðiÞ�!0

þ ÂðiÞ
0 þ ÂðiÞ

!0

in terms of the projections onto the eigenstates of ĤðiÞ
MF,

where @!0 ¼ 2h denotes the energy splitting of the mean-
field Hamiltonian. Introducing the interaction picture with

respect to
P

iĤ
ðiÞ
MF the interaction Hamiltonian Ĥði;jÞ

int ðtÞ
within the rotating wave approximation reduces to

Ĥ
ði;jÞ
int ðtÞ ¼

X
!¼0;
!0

C6

jri � rjj6
ÂðiÞ
! � ÂðjÞy

! : (6)

The terms Â
!0
describe the exchanges of an excitation

between the system �̂ðiÞ and the surrounding bath and is
relevant for the equilibration of the time evolution, while

the terms with Â0 account for a dephasing. The second
order time-convolutionless master equation [22,23] for the

reduces density matrix �̂ðiÞ
ðtÞ takes the form

d

dt
�̂ðiÞ ¼ X

!;!0
�!!0

�
ÂðiÞ
! �̂ðiÞÂðiÞy

!0 � 1

2
fÂðiÞy

!0 Â
ðiÞ
! ; �̂ðiÞg

�
;

with the rates

�!!0 ¼ 512�4nt

27@2
1

a9R
hÂðiÞ

!0 Â
ðiÞy
! i: (7)

Here, we have again used the translation invariance of the
system in the critical region � � 1 allowing us to replace
the average over the jth atom, with the local density matrix

�̂ðiÞ
ðtÞ. The master equation is a highly nonlinear equation for

the local density �̂ðiÞ
ðtÞ, where at each time step the mean-

field fR ¼ Trf�̂ðiÞP̂ðiÞ
eeg and the rates �!;!0 have to be de-

termined. We would like to stress that the master equation
conserves energy with the above mean-field solution as a
stationary state. The master equation can be efficiently

solved numerically after a transformation back into the
Schrödinger picture. In Fig. 2 the solution of the master
equation (solid line) is compared to the full dynamics
(crosses). The pair-correlation function strongly influences
the decoherence rates �!;!0 . As the pair correlation is not

determined self-consistently within our approach, we ap-
ply once a single fit for the effective Rabi frequency and the
saturated Rydberg fraction to account for these corrections.
Then, we find perfect agreement between the full dynamics
and the solution of the master equation, see Fig. 2; the
deviations at large times are accounted to the finite size
effects of the full dynamics. The characteristic time scale
of the oscillations is determined by the collective Rabi
frequency

ffiffiffiffiffiffiffiffiffiffiffiffi
Nblock

p
�, with Nblock 	 na3R the number of

atoms within the blockaded volume of the van der Waals
interaction.
In conclusion, we have established a universal scaling

behavior in strongly interacting Rydberg gases due to the
existence of a second order quantum phase transitions. It
remains an open question, whether it is experimentally
possible to reach the crystalline phase.
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