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Motivated by the remarkable properties of SrCu2ðBO3Þ2 in a magnetic field, we use perturbative

continuous unitary transformations to determine the magnetization plateaux of the Shastry-Sutherland

model, unveiling an unexpected sequence of plateaux progressively appearing at 2=9, 1=6, 1=9, and 2=15

upon increasing the interdimer coupling. We predict that a 1=6 plateau should be present in SrCu2ðBO3Þ2,
even if residual interactions beyond the Shastry-Sutherland are strong enough to modify the other plateaux

below 1=3. The method is extended to calculate the magnetization profile within the plateaux, leading to a

local structure around triplons that agrees with NMR results on SrCu2ðBO3Þ2.
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Strongly frustrated quantum magnets in an external field
are fascinating systems because the interplay between
interactions and kinetics can lead to very rich phase dia-
grams. The magnetization can be described as a gas of
bosonic particles whose density is controlled by the exter-
nal magnetic field, and since frustration typically reduces
the kinetic energy, Mott-insulating (corresponding to mag-
netization plateaux) [1], superfluid or even supersolid
phases have been predicted to occur [2]. The experimental
observation of these phases is an on-going challenge. A
major player in the field is the layered copper oxide
SrCu2ðBO3Þ2, in which several magnetization plateaux
have been observed [3,4]. However, the definitive sequence
of plateaux and the presence of supersolid phases remain
open (sometimes controversial) issues that call for further
experimental and theoretical investigation.

The magnetization of SrCu2ðBO3Þ2 is expected to be
described by the 2D spin-1=2 Heisenberg model known
as the Shastry-Sutherland model [5] in a magnetic field

H ¼ J0
X

hi;ji
Si � Sj þ J

X

hhi;jii
Si � Sj � B

X

i

Szi ;

with J0=J ’ 0:63, where the hhi; jii bonds build an array of
orthogonal dimers while the hi; ji bonds are best seen as
interdimer couplings (see Fig. 1). For J0=J smaller than a
critical ratio of order 0.7, the ground state of the model is
exactly given by the product of dimer singlets, and the
magnetization process can be described in terms of hard-
core bosons which stand for polarized triplons jt1i ¼ j""i
on the dimers interacting and moving on an effective
square lattice [6,7].

All theoretical approaches agree on the presence of
magnetization plateaux at 1=3 and 1=2 [6–10], in agree-
ment with experiments [3,11]. However, the structure be-
low 1=3 is rather controversial. On the experimental side,
the original pulsed field data have only detected two
anomalies interpreted as plateaux at 1=8 and 1=4 [3], but
the presence of additional phase transitions and of a broken
translational symmetry above the 1=8 plateau has been

established by recent torque and NMR measurements up
to 31 T [12,13]. The possibility of additional plateaux has
been pointed out by Sebastian et al. [11], who have inter-
preted their high-field torque measurements as evidence
for plateaux at 1=q with 2 � q � 9 and at 2=9. On the
theoretical side, the situation is not settled either. The finite
clusters available to exact diagonalizations prevent reliable
predictions for high-commensurability plateaux, and the
accuracy of the Chern-Simons mean-field approach initi-
ated by Misguich et al. [9] and recently used by Sebastian
et al. [11] to explain additional plateaux is hard to assess.
The essential difficulty lies in the fact that, since pla-
teaux come from repulsive interactions between triplons,
an accurate determination of the low-density, high-
commensurability plateaux requires a precise knowledge
of the long-range part of the interaction, which could not be
determined so far.
In this Letter, we combine perturbative continuous uni-

tary transformations (PCUTs) [14] with an analysis of the
effective hard-core boson model reformulated as a spin
model to investigate the magnetization process of the
Shastry-Sutherland model. We find that below 1=3, a rich
and unexpected plateau structure emerges at small
magnetization.

FIG. 1 (color online). Shastry-Sutherland lattice and defini-
tion of the two-body interactions. Vn is the coefficient of the
two-body interactions between the thick dimer and the dimer
labeled Vn.
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The PCUT transforms the Shastry-Sutherland model
into an effective model conserving the number of elemen-
tary triplets (triplons [15]). The relevant processes for the
physics in a finite magnetic field have maximum total spin
and total Sz. Other spin channels relevant for spectroscopic
observables have been studied earlier [16]. The general
form of the effective Hamiltonian obtained by the PCUT
takes the form

Heff ¼
X

n¼2;4;6���

X

r1;���;rn
Cr1;���;rnb

y
r1 � � �byrn=2brn=2þ1

� � � brn ;

where the ri’s are sites of the square lattice formed by the J

bonds, while the hard-core boson operator byr creates a
polarized triplon jt1i at site r. The coefficients Cr1;r2;���;rn
are obtained as a series in J0=J. We have kept all terms with
up to 3 creation and annihilation operators and all four-
body interactions (nr1nr2nr3nr4) that first appear at order�
8. For the two-body interactions (nr1nr2) we keep more

terms, namely, those that first appear at order less or equal
to 10. The coefficients Cr1;r2;���;rn are evaluated up to order

15 for the two-body interactions and up to order 12 for the
other terms, and they are then extrapolated using Padé or
D logPadé extrapolants. The resulting Hamiltonian con-
tains more than 15 000 processes.

The dominant terms of the most relevant types are
illustrated in Fig. 2. For J0=J < 0:5, the pure density-
density interaction terms have by far the largest coeffi-
cients. Besides, the magnitude of all terms decreases when
sites are taken apart, and the physics at low density will be
dominated by two-body interactions. The standard two-site
hopping is strongly supressed due to the frustration [17],
and the kinetic part of the Hamiltonian is dominated by the

correlated hopping (nr1b
y
r2br3) [6,16], a type of process

recently shown to strongly favor supersolid phases [2].
The evolution with J0=J of the two-body interactions

defined in Fig. 1 is depicted in Fig. 3. At small J0=J,
interactions beyond V4 are small and may be neglected,
but for larger J0=J the higher order terms V0

3, V5, and V7

(appearing at order 6) become important and contribute to

the formation of low-density plateaux. For these terms, the
bare series and the Padé extrapolations are basically indis-
tinguishable below J0=J ¼ 0:5. Beyond that value and up
to J0=J ’ 0:63, various Padé extrapolations still give con-
sistent results for these two-body interactions. However,
local interactions involving more than two particles be-
come quite strong for J0=J � 0:6 close to the phase tran-
sition and are very hard to extrapolate. We therefore restrict
the discussion to J0=J � 0:5 where the expansion is well
controlled.
The effective Hamiltonian Heff in a magnetic field is by

no means simpler than the original one in general, but it is
in the limit of small density and not too large J0=J. Indeed,
in that limit the kinetic terms are very small, and they can
be considered as a perturbation of the interaction part,
which is diagonal in the local Fock basis jnr1 ; nr2 ; . . .i. It
is thus appropriate to use a Hartree approximation in which
the variational ground state is a product of local boson
wave-functions since this approximation becomes exact in
the limit of vanishing kinetic energy. In fact, even in
models with significant kinetic energy, this approximation
has proven to be remarkably good when a comparison to
QMC was possible [2,18]. This Hartree approximation is
most simply implemented by mappingHeff onto a spin 1=2
model using the Matsubara-Matsuda representation [19] of
hard-core bosons Sþ ¼ b, S� ¼ by, Sz ¼ 1=2� byb
since it just translates into the classical approximation
(CA) where the spins are treated as classical vectors of
length 1=2. Given the huge number of terms of the model,
the energy is minimized numerically on finite size clusters
with periodic boundary conditions. To allow for high com-
mensurabilities of various symmetries, all nonequivalent
clusters with up to 32 sites for all J0=J (64 for J0=J ¼ 0:5)
have been tested and compared.
The resulting phase diagram is shown in Fig. 4, and the

structure of the plateaux in Fig. 5. In Fig. 4, we only quote

FIG. 2 (color online). Largest process of most relevant types in
the Hamiltonian Heff and its amplitude Cr1 ;���;rn in units of J at

J0=J ¼ 0:5.
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FIG. 3 (color online). Coefficients of the extrapolated two-
body interactions as a function of J0=J. Inset: Different extrapo-
lants (solid lines) as well as the bare series (dashed lines) for V 0

3

and V5.
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results fully converged with respect to the terms kept in the
Hamiltonian (see Fig. 6). The phase diagram is dominated
by a series of plateaux, at 1=3 and 1=2 (not shown) already
at very small J0=J, then by plateaux at 2=9, 1=6, 1=9 and

2=15. This plateau structure was to be expected since the
kinetic terms are quite small, and since, if they were
completely absent, the magnetization curve would simply
be a sequence of plateaux. At J0=J ¼ 0:5, the 1=6 plateau
is by far the most prominent structure below 1=3 (see
Fig. 6).
Despite the various levels of approximation, we believe

that this sequence of plateaux is quite robust. Indeed, the
essential ingredients to stabilize plateaux are the density-
density interaction terms, and the magnitude of the non-
negligible ones has been determined essentially exactly for
J0=J � 0:5. The kinetic terms are not expected to change
this sequence in any significant way for two reasons. First
of all, they are very small in the parameter range of Fig. 4.
Besides, they do not tend to stabilize plateaux but super-
fluid or supersolid phases. So, if treated beyond the Hartree
approximation, they can be expected to shift slightly the
first-order transitions between plateaux or to replace them
by small surperfluid or supersolid phases, but not to stabi-
lize additional plateaux.
A remarkable advantage of using an effective spin model

whose ground state is well approximated by a classical
configuration is that it gives access to local observables
inside the magnetization plateaux since the translational
symmetry can already be broken on finite systems [20].
This has allowed us to calculate the magnetization profile
inside the various plateaux (Fig. 5). In all cases, the build-
ing brick is a triplet and its two up-down neighboring
dimers, in agreement with the interpretation of Cu NMR
in the first plateau of SrCu2ðBO3Þ2 [4]. It might seem
surprising that the system can have dimers in an up-down
configuration since the effective model is formulated in
terms of singlets and polarized triplets. This is due to the
fact that, within the PCUT formalism, which is a canonical

FIG. 4 (color online). Magnetization plateaux as a function of
� and J0=J. The boson density n is equal to the magnetization in
units of the saturation value, and the chemical potential � is
equal to the magnetic field B. Solid line denote results that are
fully converged with respect to the terms kept in the Hamiltonian
(see Fig. 6). Well-converged results are then connected by
dashed lines.

FIG. 5 (color online). Spin density (Sz) profile of the main
plateaux at J0=J ¼ 0:5. Full (empty) circles corresponds to
magnetization along (opposite to) the magnetic field. The radius
of the circles is proportional to the magnetization amplitude. The
blue line shows the unit cell compatible with the periodicity of
the state. For the 2=15 plateau, two structures have the same
energy within the error bars of the method.

FIG. 6 (color online). Magnetization curve at J0=J ¼ 0:5:
comparison of the results obtained by keeping terms with up
to 2 creators (dotted blue curve), 3 creators (solid blue curve) and
4 creators (black curve). Well-converged plateaux used in Fig. 4
are indicated explicitly. Inset: Energy of the 1=9, rhomboid 1=8,
2=15, and 1=6 plateaux as a function of � at J0=J ¼ 0:5. The
error bars from the D log Padé extrapolation are smaller than the
line width.
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transformation, observables have to be transformed as well
with the unitary transformation U [14]. So, if jc i is the

ground state of the original model and j ~c i ¼ Ujc i the
ground state of the effective model, the expectation value

of an observable O is given by hc jOjc i ¼ h ~c jUOUyj ~c i.
In other words, a local observable such as Szri must be

calculated in Uyjc i, which, unlike j ~c i, has configurations
with dimers not only in the singlet and in the polarized
triplet state, but in the other triplet states as well.

Let us now compare the present results with previous
works. Momoi and Totsuka used perturbation theory to
third order and logically found only plateaux at 1=3 and
1=2 [6]. Miyahara and Ueda used a phenomenological
form of the long-range two-body interactions in a model
without kinetic energy to successfully determine possible
structures inside the plateaux at 1=8, 1=4 and 1=3 reported
in SrCu2ðBO3Þ2 [8]. They found several other plateaux, but
the approach was not set up to be predictive regarding the
actual plateaux stabilized in the model. Finally, there are
obvious similarities between our results and the results of
the Chern-Simons theory of Misguich et al. [9] recently
extended by Sebastian et al. [11] to allow for nonuniform
mean-field solutions (plateaux at 1=9, 1=6 and 2=9), but
some aspects of their results, for instance a well-developed
plateau at 1=5, are definitely ruled out by our analysis and
must be considered as artefacts of the method.

Let us now discuss the implications for SrCu2ðBO3Þ2.
Below 1=3, we found that the magnetization curve of the
Shastry-Sutherland model at J0=J ¼ 0:5 is dominated by a
large plateau at 1=6 and three smaller ones at 1=9, 2=15
and 2=9. In contrast with SrCu2ðBO3Þ2, we found no
evidence of a plateau at 1=8, as clearly proven by the inset
of Fig. 6 where the energy of various low-density pla-
teaux including the 1=8 plateau with rhomboid unit cell
[10] are reported. However, the Shastry-Sutherland model
at J0=J ¼ 0:5 is not a perfectly accurate model for
SrCu2ðBO3Þ2 for two reasons. First of all, the ratio J0=J
is probably closer to 0.63. This is a parameter range that we
cannot access. It is quite unlikely however that the physics
changes dramatically. Indeed, upon increasing J0=J, a
phase transition only occurs around 0.7, and more impor-
tantly, it was found to be first order [21]. So we expect the
physics to evolve smoothly up to 0.7 [22], and to change
abruptly above this value. This is further supported by the
very smooth evolution of the magnetization curve up to
J0=J ¼ 0:5 (see Fig. 4).

Besides, three types of residual couplings have been
identified, all of the same order of magnitude (a few times
J=100) [23]: in-plane Dyzaloshinskii-Moriya interactions
(both inter- and intradimer), further neighbor in-plane
exchange couplings, and interplane exchange couplings.
Being of the same order as the width of the smallest
plateaux at 1=9 and 2=15, these couplings are clearly
strong enough to affect them, and possibly to replace

them by other plateaux, for instance at 1=8. However, since
it is very wide, we expect the plateau at 1=6 to be robust
against the introduction of so small residual couplings, and
the presence of a 1=6 plateau in SrCu2ðBO3Þ2 must be
regarded as a robust prediction of our theory.
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