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The behavior of coupled harmonic oscillators in systems with specified boundary conditions is typically

characterized by resonances whose frequency spectra represent harmonics according to properties of the

individual oscillators, the interactions between them, and the overall symmetry of the system. Here it is

demonstrated that classical one- and two-dimensional radio frequency resonators constrained to a Möbius

topology are the formal partners of cylindrical ring resonators, and specifically give rise to half-integral

harmonic excitations that are orthogonal to the integral excitations of a ring. In particular, the half-integral

harmonics are formally invariant under rotations at a minimum of 4� rather than 2� rad, in analogy to the

rotational symmetry of fermions in quantum mechanics. The results offer a pathway for discovery in other

physical systems as well as the design of novel materials and electronic instrumentation.
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Since its discovery in 1858, the Möbius strip has evolved
from a mathematical and artistic curiosity to a recent
topological target in the design of materials [1], molecules
[2–6], nanostructures [7,8], and electronic and microwave
devices [9–13]. The purpose of this Letter is to point out
that certain classical physical systems embedded in the
Möbius band topology are formal complements to the
identical systems defined on a cylindrical ring. The two
systems are related by a single topological transformation
that can be described by a simple boundary condition, yet
exhibit markedly different behavior. As an example, we
discuss the rotational properties of eigenfunctions describ-
ing classical one- and two-dimensional radio frequency
resonator pairs. The results suggest that classical analogs
of phenomena previously associated only with half-
integral spin in the quantum mechanical regime may be
more common than previously believed.

Radio frequency resonators are a special class of trans-
mission lines of finite extent. They have been used as
electrical filters since the earliest days of signal transmis-
sion [14], and more recently have found wide application
in areas such as magnetic resonance imaging [15]. Of
particular interest here is a one-dimensional radio fre-
quency resonator ring that can be represented schemati-
cally by the simple low-pass filter circuit of Fig. 1(a). In
solving the problem for the electric currents on the reso-
nator, we require a periodic boundary condition of the form

InþN ¼ In; (1)

where In represents the electric current amplitude around
the nth closed loop on the periodic ladder structure of N
elements. Equation (1) is merely a statement of invariance
of the solutions under a 2� rotation. A resonator whose
eigenfunctions satisfy Eq. (1) is shown in Fig. 1(b). Its

behavior under an applied broadband alternating voltage is
well known, and consists of discrete normal modes of
oscillation whose frequencies depend upon the inductance
and capacitance of each element as well as the mutual
inductance between them [16].
Boundary conditions of the general form shown in

Eq. (1) apply to virtually any discrete classical periodic
system. More specific to the problem of a radio frequency
resonator ring is the fact that, as defined, the In are con-
served quantities with a definite handedness. This formally
defines a distinct inner and outer surface for the ring of
Fig. 1(b).
Next, consider a topological transformation resulting in

a Möbius resonator of the form shown in Fig. 1(c) [17]. To
describe its behavior, a twisted boundary condition is
necessary:

InþN ¼ �In: (2)

That is, a simple topological transformation on the reso-

FIG. 1. The Möbius-ring resonator pair. (a) An idealized one-
dimensional low-pass ladder network consisting of a series of
inductances L and capacitances C along the line. Mutual in-
ductances are considered between the loop elements defined by
In (see text). There are three options for making a periodic
structure from the segment shown. They include the ring reso-
nator in (b), the Möbius resonator in (c), and a Möbius resonator
of opposite chirality (not shown). The discrete inductive and
capacitive elements in (b) and (c) are omitted for clarity.
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nator ring results in a sign reversal of current amplitude
upon a 2� rotation of the solutions, and a 4� rotation is
now required for invariance of the eigenfunctions.

Before explicitly deriving the consequences of Eqs. (1)
and (2), we note that the theory is in principle not restricted
to radio frequency resonators, but the following discussion
will remain so confined since it will lead directly to a
comparison with experiments carried out on a simple pro-
totype. In Fig. 1(a), a mutual inductance M is defined
between nearest neighbor elements only, represented by
the coefficient �, where M ¼ 2�L. Resistance is not es-
sential for this discussion and therefore neglected, and only
the nonradiative, or near-field regime will be treated.
Finally, it is assumed that the circuit is driven by a voltage
that varies sinusoidally with time across any one of the
capacitors or inductors. With these constraints, the appli-
cation of Maxwell’s equations leads to Kirchhoff’s voltage
relation for the nth element,
�
!2 � 1

LC

�
In þ

�
1

2LC
� �!2

�
ðInþ1 þ In�1Þ ¼ 0: (3)

Equation (3) is simply a one-dimensional nondissipative
wave equation on the circuit, with a discrete rather than
continuous spatial variable.

For the ring of Fig. 1(b) with the periodic boundary
condition given in Eq. (1), solutions are of the usual form:

In ¼ A exp

�
i2�n�

N

�
þ B exp

�
� i2�n�

N

�
: (4)

Here � is an integer specifying the normal mode.
Substitution of Eq. (4) into Eq. (3) yields the dispersion
relation for the allowed frequency spectrum:

!2 ¼ 2sin2ð��=NÞ
LC½1� 2� cosð2��=NÞ� : (5)

For an N element structure where N is even, there are
N � 1 eigenvalues, including ðN � 2Þ=2 degenerate dou-
blets and one singlet.

Next, consider the twisted boundary condition of
Eq. (2), and note that the eigenfunctions satisfying the
condition are of the same form as Eq. (4) provided that
the mode indices are given half-integral values: Q ¼
1=2; 3=2; 5=2; . . . ; ðN � 1Þ=2 relative to a ring consisting
of identical components. The dispersion relation is there-
fore identical to Eq. (5); however, the wave vectors are
shifted by

�k ¼ ��=N: (6)

The two distinct topological entities of Figs. 1(b) and 1(c)
can thus be viewed formally as a complementary pair
related by a single transformation. Their description natu-
rally divides into half-integral and integral normal mode
indices, and the rotational properties of the eigenfunctions
describing the current amplitudes have a simple analogy to
the transformation of half-integral (fermion) and integral

(boson) spin wave functions under rotation. More formally,
the half-integral mode indices guarantee that the current
amplitude eigenfunctions In transform as spinors on the
twisted structure.
Orthogonal degenerate doublets are well known in the

ring resonator, and are realized in practice by driving the
ring at circuit elements spaced�=2 rad apart. They are also
supported in the Möbius resonator according to Eq. (4).
However, in this case they are excited in a nonintuitive way
by driving the circuit at elements spaced � rather than the
conventional �=2 rad apart.
Eigenvalues and eigenfunctions for a Möbius-ring pair

constructed in the laboratory are shown in Fig. 2. The eight
element ring resonator of Fig. 1(b) was constructed using
16:0� 0:8 pF porcelain chip capacitors soldered to adhe-
sive backed copper tape of width 6 mm and thickness equal
to 40 �m, which in turn was fixed to a strip of Teflon with a
width of 4.5 cm and thickness equal to 1 mm. The finished
resonator had a diameter of 22 cm and a width equal to
4 cm. The distance between capacitive elements was ap-
proximately 9 cm. The Möbius resonator of Fig. 1(c) was
formed directly from the ring topology by cutting the two
copper tape end rings and effecting a topological trans-
formation on the Teflon substrate via a half twist, then
resoldering the copper leads. Normal modes were mea-
sured via voltage reflection from a return loss bridge circuit
and a network analyzer. Excitation frequencies were swept
from 25–275 MHz in order to span the entire band of reso-
nances (eigenvalues). Nominally degenerate pairs were
observed due to the slight variation in lumped elements
in the circuit or by driving the structures successively at
N=2 or N=4 elements apart for the Möbius and ring reso-
nators, respectively. An alternative method for distinguish-
ing degenerate pairs was to douse the resonator with liquid
nitrogen. The resulting reduction in linewidths provided
the necessary spectral resolution for visualization of the
doublets. Eigenfunctions were mapped using a continuous
wave excitation frequency positioned at each eigenvalue. A
total of seven doublets and one singlet were observed. The
data for both structures are plotted together along with
predicted dispersion relations for several values of the
mutual inductance coupling constant �. The best fit to
the data yielded � ¼ 0:07. As predicted, the eigenvalues
of the Möbius resonator fall precisely at half-integral val-
ues of the wave vectors when compared to its cylindrical
partner.
By inspection of Eqs. (1) and (2), it is evident that there

is no additional structure associated with the Möbius-ring
pair, since a second topological half-twist transformation
on the Möbius resonator leads back to the boundary con-
dition of Eq. (1). That is, for one-dimensional resonators, it
is evident that only integral and half-integral excitations
are allowed, and other subintegral excitations are excluded.
However, since the Möbius resonator has a definite hand-
edness, there are two topologically distinct Möbius reso-
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nators of opposite chirality with identical eigenfunctions
and eigenvalues.

Note that the one-dimensional Möbius-ring resonator
pair may be one of the simplest possible classical mani-
festations of subintegral harmonic behavior, as defined by
the symmetry of the eigenfunctions under rotation. For
example, although there are numerous examples of iso-
morphism between electrical and mechanical systems, and,
in particular, Eq. (3) with � ¼ 0 is isomorphic to a one-
dimensional system of coupled mechanical oscillators, the
boundary condition of Eq. (2) is the point of departure for
similarities between the two domains.

From the dispersion relation of Eq. (5), it is clear that the
eigenvalues are a relatively insensitive function of the
mutual inductance, and thus the deformation of classical
Möbius strip substrates that was recently demonstrated [8]
does not appreciably affect the behavior of the Möbius
resonator. In fact, for our prototype, if � ¼ N=4 the reso-
nance frequency is independent of �.

The eigenfunctions of the Möbius resonator form an
orthogonal basis set, which is also the case for the ring.
It is also true that all eigenfunctions of the pair are mu-
tually orthogonal. This presents an interesting possibility
for the design of materials [18]. For example, if the mate-
rial is composed of an array of either Möbius or ring
resonators as its basis, complement resonators could in
principle be introduced with minimal electromagnetic
interactions.

Observation of 4� rotational symmetry in systems de-
scribed by classical eigenvalue problems has thus far been

rare in nature. However, twisted boundary conditions with
a generalized form of Eq. (2) have recently been discussed
for systems of Heisenberg spin rings [19], leading to shifts
in wave vectors of magnitude �k ¼ �=N [compare to
Eq. (6)], where � is the solid angle of the external field
subtended across the ring andN is the number of spin sites.
The investigation of analogous rotational symmetry in

two-dimensional systems is in principle straightforward
using radio frequency resonators as models [20,21].
There are several interesting possible topologies, including
the Klein bottle and twisted toroidal resonators. As a
simple extension of the theory which illustrates some
characteristics of classical two-dimensional twisted sym-
metry, we describe a two-dimensional high-pass Möbius
resonator, or twisted periodic drum, and compare the re-
sults to experimental findings. The schematic resonator
shown in the inset of Fig. 3(a) is a 2� 8 element twisted
ladder network. If we retain the assumption of nearest
neighbor coupling but allow rectangular rather than square
meshes, the eigenvalue problem can be defined as a
straightforward extension of Eq. (3). However, the bound-
ary conditions on the eigenfunctions are now

I0;n ¼ IMþ1;n ¼ 0; IMþ1�m;nþN ¼ Im;n: (7)

With eigenfunctions of the form

Im;n ¼ sin

�
�m�

Mþ 1

��
A exp

�
i2�n�

N

�
þ B exp

�
� i2�n�

N

��
;

(8)

FIG. 2 (color). Eigenvalues and eigenfunctions for one-dimensional low-pass Möbius-ring resonators. (a) Measured spectra
(eigenvalues) are shown for the Möbius (red) and ring (black) resonators. The spectral amplitudes are the voltage standing wave
ratios (SWR) observed while driving the resonators inductively at a single location. Using this method all resonant frequencies are
visible, but the degenerate doublets are unresolved in most cases (see text for details). The insets show theoretical [black, following
Eq. (4)] and measured current amplitudes (blue). (b) If the measured eigenvalues of the Möbius resonator are assigned to half-integral
mode indices in Eq. (5), they lie along the identical theoretical dispersion curve (in bold gray, � ¼ 0:07) describing the conventional
ring resonator. The dotted curves represent one half (long-dashed curve) and twice (short-dashed curve) the observed coupling
constant. Inset (color plots): The 15 predicted eigenfunctions for the eight element Möbius-ring pair are represented by Biot-Savart
plots of the magnetic field amplitude at each eigenvalue.
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it follows that two excitation bands are allowed on the
structure, as shown in Fig. 3(b). The higher frequency
band is given by � ¼ 1, � ¼ ð1=2; 3=2; 5=2; 7=2Þ, while
the lower frequency band has � ¼ 2, � ¼ ð0; 1; 2; 3; 4Þ.
Thus, in two dimensions, eigenfunctions are allowed with
both 2� and 4� rotational symmetry on the same structure.
Note also that in a high-pass configuration, the most ho-
mogeneous eigenfunctions appear at the highest frequency.
If the results are compared to those of a 2� 8 ring reso-
nator, it can be shown that the high frequency band of the
ring has � ¼ 1, � ¼ ð0; 1; 2; 3; 4Þ in analogy to the
Möbius-ring correspondence for the one-dimensional
case, while the low frequency band has identical eigen-
functions and eigenvalues for the two structures. This
behavior was verified on a 2� 8 element resonator con-
structed on a Teflon band 80 cm in length and 15 cm wide,
and the results plotted in Fig. 3(b).

One potential application of the above results is in the
design of electronic musical instruments [22]. If we use the
one-dimensional prototype as an example, note that the
dispersion relation is nearly linear for �<N=4. A trans-
formation from the ring to the Möbius structure lowers the
fundamental frequency by one octave and higher frequen-
cies in proportion to the mode numbers. In two dimensions,
the normal modes are similar to those of a snare drum shell
[23]. In either case there is a choice of a conventional or
inverted frequency scale depending upon whether a low-
pass or high-pass configuration is used. Using standard
methods to shift the radio frequencies into the audio range,
and the fact that an inductively coupled electronic hammer

device can be designed to ‘‘strike’’ the resonator at differ-
ent locations and thereby excite harmonics at variable
amplitudes, may offer interesting opportunities for largeN.
In closing we point out that since classical analogs of

fermion-boson rotational symmetry are evidently possible
at length scales spanning several orders of magnitude,
observation of the physics in other systems or applications
in device design appear to be possible. If only spectroscopy
is available to infer the topology, the resolution of the wave
vectors is critical, and therefore systems with lower N may
be the preferred candidates.
We thank Eric Aronowitz for assistance in constructing

the resonators.
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FIG. 3. Eigenvalues and eigenfunctions for a 2� 8 high-pass
Möbius (a) and ring resonator (b). Theoretical eigenvalues are
given by gray lines, and experimental eigenvalues by symbols. In
addition, for each data point the theoretical eigenfunction is
displayed by rendering the current amplitudes for the 16 ele-
ments in gray scale. Model parameters for the numerical com-
putation of theoretical eigenvalues for both resonators were
obtained by measurements of the long- and short-sided inductive
coupling constants and the single element resonance frequency.
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