
Realizing and Detecting the Quantum Hall Effect without Landau Levels
by Using Ultracold Atoms

L. B. Shao,1,2,3 Shi-Liang Zhu,1,* L. Sheng,2 D.Y. Xing,2 and Z.D. Wang3

1Institute for Condensed Matter Physics and Department of Physics, South China Normal University, Guangzhou, China
2National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing, China

3Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong,
Pokfulam Road, Hong Kong, China

(Received 17 April 2008; published 12 December 2008)

We design an ingenious scheme to realize Haldane’s quantum Hall model without Landau levels by

using ultracold atoms trapped in an optical lattice. Three standing-wave laser beams are used to construct

a wanted honeycomb lattice, where different on site energies in two sublattices required in the model can

be implemented through tuning the phase of one laser beam. The staggered magnetic field is generated

from the light-induced Berry phase. Moreover, we establish a relation between the Hall conductivity and

the atomic density, enabling us to detect the Chern number with the typical density-profile-measurement

technique.
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The quantum Hall effect (QHE) [1] in two-dimensional
electron systems is one of the most peculiar quantum-
mechanical phenomena observed in nature. The QHE is
usually associated with a uniform external magnetic field,
which splits the electron energy spectrum into discrete
Landau levels (LLs). When the Fermi energy lies in the
gap between two LLs, the Hall conductivity in units e2=h is
accurately quantized to an integer. The precise quantiza-
tion of the Hall conductivity was explained by Laughlin [2]
based upon a gauge invariance argument, which is funda-
mental to the picture of edge states proposed by Halperin
[3]. On the other hand, Thouless, Kohmoto, Nightingale,
and Nijs (TKNN) [4] interpreted the Hall conductivity as
the topological Chern number of the Uð1Þ bundle over the
magnetic Brillouin zone of the bulk states.

Twenty years ago, Haldane showed in principle that a
QHE may also result from breaking of time-reversal sym-
metry without any net magnetic flux through a unit cell of a
periodic two-dimensional (2D) system [5]. In his work,
Haldane constructed a tight-binding model on a honey-
comb lattice including a complex second nearest-neighbor
hopping integral. The honeycomb lattice consists of two
triangular sublattices �A and �B with different on site ener-
gies M and �M, as shown in Fig. 1(a). A periodic vector
potential AðrÞ is applied to the lattice, given that the total
magnetic flux through each unit cell vanishes, i.e., the first-
neighbor hopping integral t is unaffected. The second-
neighbor hopping integral t0 acquires a Peierls phase factor
expðieRA � dr=@Þ, where the integration is along the hop-

ping path. The Hamiltonian of the model is written as

H ¼ X
hl;ji

ðtayl bj þ H:c:Þ þX
j

Mðayj aj � byj bjÞ

þ X
hhl;jii

t0ei’jlðayl aj þ byl bjÞ; (1)

where ai and bi are the annihilation operators on site Ri in
sublattices �A and �B, respectively. ’jl is the accumulated

Peierls phase from site j to its second neighbor l, which is
assumed to take the form ’jl ¼ �’. The hopping direc-

tions for which ’jl ¼ þ’ are shown in Fig. 1(a). The most

interesting and unique feature of the model lies in that the
phase of the system can be changed from a normal insula-
tor to a Chern insulator by the simulation of parity anomaly
[5–11]. However, it is extremely hard to realize the
Haldane’s model experimentally in ordinary condensed
matter systems because of the unusual staggered magnetic
flux assumed in the model.
On the other hand, the technology of ultracold atoms in

an optical lattice provides a perspective approach to ex-
plore rich fundamental phenomena of condensed matter
physics [12–14]. In particular, how to realize the QHE with
cold atoms has attracted considerable interest [15–19].
Nevertheless, the atomic QHE has not been observed yet,
mainly due to challenges in both the realization and detec-
tion of the atomic Hall effects. Although an effective
magnetic field for neutral atoms can be simulated either
by rotating the atoms [20] or by laser-induced Berry phases
[21–24], the strong magnetic field region required for QHE
has not been reached yet in experiments. For the rotating
method, the system is close to the point at which the
centrifugal potential cancels the external harmonic trap,
and the atoms may fly apart at the rotation speed required
by QHE [16,19]. For the laser-induced Berry phase ap-
proach, the cold atoms moving in a spatially varying laser
field feel an effective gauge potential [21–24], but the
region of the strong uniform field is rather small for two
typical counterpropagating Gaussian laser beams. In addi-
tion, the detection method for cold atoms is very different
from that for condensed matter systems; especially, the
widely used technique for QHE based on the transport
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measurements is not workable for atomic QHE. In this
Letter, we design an ingenious scheme to realize the
Haldane’s quantum Hall model without LLs by using ultra-
cold atoms trapped in an optical lattice. We work out a
distinct method to construct the honeycomb lattices that
have different on site energies by three standing-wave laser
beams. Although it is still hard to achieve a strong homo-
genous magnetic field required by the conventional QHE in
atomic system, we may evade this bottleneck since LLs are
not necessary in this unconventional QHE. We elaborate
that the staggered magnetic field, which is hard to generate
in condensed matter systems, may be rather easy to set up
by other three standing-wave laser beams. In this scenario,
different on site energies in two sublattices can be easily
adjusted through tuning the phase of one of the laser
beams, and thus the whole phase diagram [5] including
the exotic topological phase transition predicted by
Haldane may be revealed experimentally. Furthermore,
based on (2þ 1)-dimensional relativistic quantum me-
chanics calculations, we establish a direct relationship
between the Hall conductivity and the equilibrium atomic
density, such that the famous topological Chern number
may be experimentally detected with the standard density
profile measurement used in atomic systems [12].

Let us first consider single component fermionic atoms
(e.g., 40K, 6Li, etc.) in a 2D honeycomb lattice [14,25],

which can be realized by three detuned laser beams. A
detuned standing-wave laser beam will create a potential in
the form V0sin

2ðkL
0 � rÞ, where V0 is the potential ampli-

tude and kL
0 is the wave vector of the laser. To generate the

honeycomb lattice with different on site energies in sub-
lattices �A and �B, the three laser beams with the same wave
length but different polarizations are applied along three

different directions: ey and
ffiffi
3

p
2 ex � 1

2 ey, respectively. The

potential is thus given by V ¼ V0½sin2ð�þ þ �
2Þ þ

sin2ðykL0 þ �
3Þ þ sin2ð�� � �

2Þ�, where �� ¼ ffiffiffi
3

p
xkL0=2�

ykL0=2. The potential contours are plotted in Fig. 1(b)

and 1(c). Under these conditions, atoms are trapped at
the minima of the potential, forming a honeycomb lattice.
An amazing feature here is that the different site energies
of sublattices �A and �B are controllable by the phase of laser
beam �. For instance, we get exactly the honeycomb lattice
with the same on site energies (M ¼ 0) for � ¼ 2

3�, as

shown in Fig. 1(b), while the two sublattices have different
on site energies (M � 0) for � � 2�

3 .

Now, we elaborate how to simulate the staggered mag-
netic field in the Haldane’s model. Since the net flux per
unit cell vanishes, the vector potential applied to the lattice
must be periodic. Such magnetic fields can be created by
Berry phase induced from two opposite-travelling
standing-wave laser beams [22]. For the two laser beams

with Rabbi frequencies �1 ¼ �0 sinðykL2 þ �
4Þeixk

L
1 and

�2 ¼ �0 cosðykL2 þ �
4Þe�ixkL

1 , the effective gauge potential

is generated as A1ðrÞ ¼ @kL1 sinð2ykL2 Þex [22]. Here, kL1 ¼
kL cos� and kL2 ¼ kL sin� with kL the wave vector of the
laser and � the angle between the wave vector and the ex
axis. We emphasize that the choice of wave vector kL2 of the

laser beams must be a multiple of 2
ffiffi
3

p
�

3a in order to be

commensurate with the optical lattice. We take kL2 ¼
2
ffiffi
3

p
�

3a . The Peierls phases for the nearest-neighbor hopping

in Fig. 1(a) are ’12 ¼ ’61 ¼ �’34 ¼ �’45 ¼ ’0 and
’23 ¼ ’56 ¼ 0. For the next-nearest-neighbor hopping
integrals, which are integrated on a period of the vector
potential, the corresponding accumulated phases are’13 ¼
’24 ¼ ’46 ¼ ’15 ¼ 0, and ’35 ¼ ’62 ¼ ’, where ’ ¼
kL1a sin

akL
2ffiffi
3

p . Since the lattice has the symmetry of point

group C3v, the vector potential A1 is rotated by � 2
3� to

obtain the other two vector potentials. Then, the total
accumulated phases along the nearest-neighbor directions
are found to cancel out because of the symmetry of honey-
comb lattice. However, the total accumulated phases for
the next-nearest-neighbor hopping along the arrowed di-
rections of the dashed lines in Fig. 1(a) are just ’. There-
fore, the total vector potential and magnetic field can be
written as

A ¼ @kL1 ½sinð2ykL2 Þ þ cosð ffiffiffi
3

p
xkL2 Þ sinðykL2 Þ�ex

� ffiffiffi
3

p
@kL1 sinð

ffiffiffi
3

p
xkL2 Þ cosðykL2 Þey

B ¼ �2@kL1 k
L
2 ½cosð2ykL2 Þ þ 2 cosð ffiffiffi

3
p

xkL2 Þ cosðykL2 Þ�ez:
(2)
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FIG. 1 (color online). (a) Illustration of the Honeycomb lattice
structure of graphene, where open and solid circles represent

sites in sublattices �A and �B. a1 ¼ ð12 a;�
ffiffi
3

p
2 aÞ, a2 ¼ ð12a;

ffiffi
3

p
2 aÞ

are the unit vectors of the underlying triangular sublattice. s1, s2,
and s3 are three vectors pointing from a �B site to its three nearest-
neighbor sites. (b) and (c) show the contours of the potential V
for � ¼ 2�=3 and � ¼ 39�=60, respectively. The vertical (hori-
zontal) axis represents ykL0 =� (xkL0 =�). (d) Contours of the

magnetic field defined by Eq. (2).
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The contours of the magnetic field are plotted in Fig. 1(d).
As a consequence, the total Hamiltonian of this
cold atomic system can be described by Eq. (1). With
Fourier transformation aj ¼ 1ffiffiffi

N
p P

ke
ik�Rjak and bj ¼

1ffiffiffi
N

p P
ke

ik�Rjbk, the Hamiltonian of the system can be writ-

ten by using ‘‘spinors’’ ðak; bkÞt as
Hk ¼ h0ðkÞ þ h1ðkÞ�1 þ h2ðkÞ�2 þ h3ðkÞ�3; (3)

where h0ðkÞ ¼ 2t0 cos’
P

i cosðk � aiÞ, h1ðkÞ ¼
t
P

i cosðk � siÞ, h2ðkÞ ¼ t
P

i sinðk � siÞ, and h3ðkÞ ¼
Mþ 2t0 sin’

P
i sinðk � aiÞ. The vector hðkÞ ¼

½h1ðkÞ; h2ðkÞ; h3ðkÞ� is an effective magnetic field of the
‘‘spinors.’’ The energy spectra are E ¼ h0ðkÞ � jhðkÞj,
and the energy gap is jh3j, where h3 ¼ h3ðKþÞ (or
h3ðK�Þ) with K� ¼ � 4�

3a ð1; 0Þ. If h3 ¼ 0, the conduction

band touches the valence band at two Dirac points Kþ and
K�. The famous TKNN index or Chern number for this

system is given by C ¼ 1
8�

R
1BZ d

2k���ĥ � ð@k�ĥ� @k�ĥÞ
[26] with ĥðkÞ as the unit vector of hðkÞ. It is demonstrated
that the gauge invariance C can only take integer values
and the quantum Hall conductivity is proportional to the
Chern number [4]. For the Haldane’s model, different
phases of the system can be characterized by different
values of C. The phase diagram is depicted in Fig. 2(a)
[5], in which the solid line is the critical boundary between
the normal insulator with C ¼ 0 and the Chern insulator
with C ¼ �1. It is notable that the phase ’ ¼ � tan� can
be controllable by simply choosing the laser angle �, while
the energy differenceM between sublattice can be tuned by
the phase of laser beams. With such controllability, it is
promising to realize the exotic topological phase transition
between different Chern numbers in Fig. 2(a).

We now turn to establish a direct connection between the
topological Cherm number and the atomic density, noting
that the latter can be detected with density profile mea-
surements typically used in atomic systems. We first de-
velop a Green’s function method to calculate the atomic
density. The system is actually described by a Dirac-like
Hamiltonian which can be obtained by expanding Eq. (3)
around two Dirac points K� ¼ � 4�

3a ð1; 0Þ. By the substi-

tution of k ! K� þ p, we have H� ¼ �	Fp1�
1 �

	Fp2�2 þm��3 at K�, respectively, where 	F ¼
ffiffi
3

p
at
2 is

the Fermi velocity and m� ¼ M� 3
ffiffiffi
3

p
t0 sin’. Under uni-

tary transformation �2H��2, we can write the
Hamiltonian in a more symmetric form

H� ¼ �vFp1�
1 � vFp2�

2 þm�3; (4)

where the notation m ¼ �m� is introduced for simplicity
(i.e., we temporally omit subscripts � below).

It is observed that the conductivity �xy (Chern number)

of the system is related to the atomic density 
 according to
the Streda formula �xy ¼ @
=@Bj�;T once an additional

uniform magnetic fieldB is applied. Such a magnetic field
can be simulated by rotating the optical lattice at a constant
frequency ! ¼ eB=2m. We choose the vector potential as

A0 ¼ A1 ¼ 0 and A2 ¼ Bx. By using the substitution
p ! pþ eA, Eq. (4) can be solved in the real space. The
eigenenergies of the Hamiltonian can be obtained as [5]

En ¼
��msgnðeBÞ n ¼ 0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2n@v2

FjeBj
q

n ¼ 1; 2; 3 . . .
; (5)

and the degeneracy of each LL is jB=�0j per unit area with
�0 the flux quantum. The density 
 in terms of the Green’s
function for the Dirac Hamiltonian is given by

ð 6DþmÞG ¼ 1; 
 ¼ �Tr½�0Gðx; x0Þ�jx!x0 (6)

where 6D ¼ �
D
, with D0 ¼ @@0 ��, D1 ¼ @vF@1,
D2 ¼ @vF@2 þ ievFBx, �0 ¼ �3, �1 ¼ �2, and �2 ¼
��1 in Euclidean space. From the standard Green function
approach, the atomic density is explicitly obtained as


� ¼
��������
B
�0

��������sgnð�Þ
�
int

�
�2 �m2�
2@v2

FjeBj
�
þ 1

2

�
�ðj�j � jm�jÞ

� B
2�0

m�
jm�j�ðjm�j � j�jÞ; (7)

where � stands for the unit step function and int½x� means
the largest integer less than x. The second term of Eq. (7) is
the atomic density induced into vacuum as � ! 0 by the
uniform magnetic field. It is of parity anomaly since its
corresponding Hall current is independent of the magnetic
field after multiplying the drift velocity E=B, where E is
the electric field.

FIG. 2. (a) Phase diagram of the system, where the phase
boundary (solid line) corresponds to h3 ¼ 0. (b)–(e) Charge
density in units B=�0 for jm�j ¼ 0:5jmþj and eB@v2

F ¼
4jmþj as a function of normalized chemical potential �=jmþj
for four different cases: (b) mþ < 0<m�, (c) mþ > 0>m�,
(d) mþ <m� < 0, and (e) mþ >m� > 0.
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The total atomic density is given by the sum of the
densities of the two components 
 ¼ 
þ þ 
�. At � ¼
0, the Hall conductivity atB ¼ 0 can be obtained from the

density by using the Streda formula as �xy ¼ C e2

h , where

C ¼ 1
2 ½sgnðmþÞ � sgnðm�Þ� is the Chern number. To show

how to detect the Chern number of the system, we consider
a finite magnetic field B. The calculated density 
 in unit
of jB=�0j is plotted as a function of the normalized
chemical potential �=jmþj (for jm�j ¼ 0:5jmþj and
e@v2

FB ¼ 4jmþj) in Fig. 2. It is essential that the spatial
density profile 
ðrÞ is uniquely determined by the function

ð�=jmþjÞ in the local density approximation, which is
typically well satisfied for trapped fermions. Figures 2(b)–
2(d) and 2(d) stand for four different cases. The plateaus in
the atomic density have one-to-one correspondence to the
plateaus in the Hall conductivity due to the finite magnetic
field eB> 0. We here focus on � ¼ 0, which is of our
main interest. For mþ < 0<m�, which corresponds to
C ¼ �1, the atomic density 
 ¼ �B=�0 < 0, as shown
in Fig. 2(b). Formþ > 0>m�, which corresponds to C ¼
1, the density 
 ¼ B=�0 > 0, as shown in Fig. 2(c). For
the other two cases mþ <m� < 0 and mþ >m� > 0, mþ
and m� have the same sign, corresponding to C ¼ 0, and
the density 
 ¼ 0, as seen from Figs. 2(d) and 2(e).
Therefore, a simple direct relation between the Chern
number and the atomic density is established as

C ¼ 
�0=B: (8)

The important relation (8) actually provides us a feasible
way to experimentally detect the Chern numberC in differ-
ent phases. In the absence of B, the density of the cold
atoms at � ¼ 0 is first measured, which is denoted as 
0.
Then the optical lattice is rotated to generate the effective
uniform magnetic field B, and the new density of the cold
atoms 
1 is measured. If 
1 > 
0ð
 < 
0Þ, the system is in
a Chern insulator phase with Chern number C ¼ 1ðC ¼
�1Þ. If 
1 ¼ 
0, the system behaves like a normal insula-
tor with C ¼ 0. Since the density difference is actually
quantized in unitsB=�0, the above method could be rather
robust.

Finally, we briefly address an alternative approach to
realize the Haldane’s QHE. The fermions we discussed are
in the s-band of the honeycomb lattice. As for fermions in
the p-orbital bands, a Haldane’s quantum Hall model
without LLs can also be implemented by rotating each
optical lattice site around its own center [27].

In summary, we have shown that the Haldane’s QHE
model can be realized by using ultracold atoms in an
optical lattice. We have established a relationship between
the Hall conductivity and the equilibrium atomic density,
which provides a feasible way to experimentally detect the
Chern number C in different phases.
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